Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Courtney W. Houchen is active.

Publication


Featured researches published by Courtney W. Houchen.


Stem Cells | 2009

Doublecortin and CaM kinase-like-1 and leucine-rich-repeat-containing G-protein-coupled receptor mark quiescent and cycling intestinal stem cells, respectively.

Randal May; Sripathi M. Sureban; Nguyet Hoang; Terrence E. Riehl; Stan Lightfoot; Rama P. Ramanujam; James H. Wyche; Shrikant Anant; Courtney W. Houchen

It is thought that small intestinal epithelia (IE) undergo continuous self‐renewal primarily due to their population of undifferentiated stem cells. These stem cells give rise to transit amplifying (daughter/progenitor) cells, which can differentiate into all mature cell types required for normal gut function. Identification of stem cells in IE is paramount to fully understanding this renewal process. One major obstacle in gastrointestinal stem cell biology has been the lack of definitive markers that identify small intestinal stem cells (ISCs). Here we demonstrate that the novel putative ISC marker doublecortin and CaM kinase‐like‐1 (DCAMKL‐1) is predominantly expressed in quiescent cells in the lower two‐thirds of intestinal crypt epithelium and in occasional crypt‐based columnar cells (CBCs). In contrast, the novel putative stem cell marker leucine‐rich‐repeat‐containing G‐protein‐coupled receptor (LGR5) is observed in rapidly cycling CBCs and in occasional crypt epithelial cells. Furthermore, functionally quiescent DCAMKL‐1+ crypt epithelial cells retain bromo‐deoxyuridine in a modified label retention assay. Moreover, we demonstrate that DCAMKL‐1 is a cell surface expressing protein; DCAMKL‐1+ cells, isolated from the adult mouse small intestine by fluorescence activated cell sorting, self‐renew and ultimately form spheroids in suspension culture. These spheroids formed glandular epithelial structures in the flanks of athymic nude mice, which expressed multiple markers of gut epithelial lineage. Thus, DCAMKL‐1 is a marker of quiescent ISCs and can be distinguished from the cycling stem/progenitors (LGR5+). Moreover, DCAMKL‐1 can be used to isolate normal small intestinal stem cells and represents a novel research tool for regenerative medicine and cancer therapy. STEM CELLS 2009;27:2571–2579


Gastroenterology | 2008

Knockdown of RNA binding protein musashi-1 leads to tumor regression in vivo.

Sripathi M. Sureban; Randal May; Robert J. George; Brian K. Dieckgraefe; Howard L. McLeod; Kumar S. Bishnupuri; Gopalan Natarajan; Shrikant Anant; Courtney W. Houchen

BACKGROUND & AIMS In the gut, tumorigenesis is thought to arise from the stem cell population located near the base of intestinal and colonic crypts. The RNA binding protein musashi-1 (Msi-1) is a putative intestinal and progenitor/stem cell marker. Msi-1 expression is increased during rat brain development and in APC(min/+) mice tumors. This study examined a potential role of Msi-1 in tumorigenesis. METHODS Msi-1 small interfering RNA (siRNA) was administered as a liposomal preparation to HCT116 colon adenocarcinoma xenografts in athymic nude mice and tumor volume was measured. Cell proliferation was assessed by hexosaminidase and 3-(4,5-dimethylthiazol 2-yl)-2,5-diphenyltetrazolium bromide MTT assays. siRNA-transfected cells were subjected to 12 Gy gamma-irradiation. Apoptosis was assessed by immunoreactive activated caspase-3 and mitosis was assessed by phosphorylated histone H3 staining. The tumor xenografts were stained similarly for phosphorylated histone H3, activated caspase-3, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling, Notch-1, and p21(WAF1). Furthermore, siRNA-transfected cells were subjected to cell-cycle analysis and Western blot analyses for Notch-1 and p21(WAF1). RESULTS Knockdown of Msi-1 resulted in tumor growth arrest in xenografts, reduced cancer cell proliferation, and increased apoptosis alone and in combination with radiation injury. siRNA-mediated reduction of Msi-1 lead to mitotic catastrophe in tumor cells. Moreover, there was inhibition of Notch-1 and up-regulation of p21(WAF1) after knockdown of Msi-1. CONCLUSIONS Our results show the involvement of Msi-1 in cancer cell proliferation, inhibition of apoptosis, and mitotic catastrophe, suggesting an important potential mechanism for its role in tumorigenesis.


Journal of Clinical Investigation | 2014

Long-lived intestinal tuft cells serve as colon cancer–initiating cells

C. Benedikt Westphalen; Samuel Asfaha; Yoku Hayakawa; Yoshihiro Takemoto; Dana J. Lukin; Andreas H. Nuber; Anna Brandtner; Wanda Setlik; Helen Remotti; Ashlesha Muley; Xiaowei Chen; Randal May; Courtney W. Houchen; James G. Fox; Michael D. Gershon; Michael Quante; Timothy C. Wang

Doublecortin-like kinase 1 protein (DCLK1) is a gastrointestinal tuft cell marker that has been proposed to identify quiescent and tumor growth-sustaining stem cells. DCLK1⁺ tuft cells are increased in inflammation-induced carcinogenesis; however, the role of these cells within the gastrointestinal epithelium and their potential as cancer-initiating cells are poorly understood. Here, using a BAC-CreERT-dependent genetic lineage-tracing strategy, we determined that a subpopulation of DCLK1⁺ cells is extremely long lived and possesses rare stem cell abilities. Moreover, genetic ablation of Dclk1 revealed that DCLK1⁺ tuft cells contribute to recovery following intestinal and colonic injury. Surprisingly, conditional knockdown of the Wnt regulator APC in DCLK1⁺ cells was not sufficient to drive colonic carcinogenesis under normal conditions; however, dextran sodium sulfate-induced (DSS-induced) colitis promoted the development of poorly differentiated colonic adenocarcinoma in mice lacking APC in DCLK1⁺ cells. Importantly, colonic tumor formation occurred even when colitis onset was delayed for up to 3 months after induced APC loss in DCLK1⁺ cells. Thus, our data define an intestinal DCLK1⁺ tuft cell population that is long lived, quiescent, and important for intestinal homeostasis and regeneration. Long-lived DCLK1⁺ cells maintain quiescence even following oncogenic mutation, but are activated by tissue injury and can serve to initiate colon cancer.


Cancer Research | 2011

DCAMKL-1 regulates epithelial-mesenchymal transition in human pancreatic cells through a miR-200a-dependent mechanism

Sripathi M. Sureban; Randal May; Stan Lightfoot; Aimee B. Hoskins; Megan R. Lerner; Daniel J. Brackett; Russell G. Postier; Rama P. Ramanujam; Altaf Mohammed; Chinthalapally V. Rao; James H. Wyche; Shrikant Anant; Courtney W. Houchen

Pancreatic cancer is an exceptionally aggressive disease in great need of more effective therapeutic options. Epithelial-mesenchymal transition (EMT) plays a key role in cancer invasion and metastasis, and there is a gain of stem cell properties during EMT. Here we report increased expression of the putative pancreatic stem cell marker DCAMKL-1 in an established KRAS transgenic mouse model of pancreatic cancer and in human pancreatic adenocarcinoma. Colocalization of DCAMKL-1 with vimentin, a marker of mesenchymal lineage, along with 14-3-3 σ was observed within premalignant PanIN lesions that arise in the mouse model. siRNA-mediated knockdown of DCAMKL-1 in human pancreatic cancer cells induced microRNA miR-200a, an EMT inhibitor, along with downregulation of EMT-associated transcription factors ZEB1, ZEB2, Snail, Slug, and Twist. Furthermore, DCAMKL-1 knockdown resulted in downregulation of c-Myc and KRAS through a let-7a microRNA-dependent mechanism, and downregulation of Notch-1 through a miR-144 microRNA-dependent mechanism. These findings illustrate direct regulatory links between DCAMKL-1, microRNAs, and EMT in pancreatic cancer. Moreover, they demonstrate a functional role for DCAMKL-1 in pancreatic cancer. Together, our results rationalize DCAMKL-1 as a therapeutic target for eradicating pancreatic cancers.


Cancer Research | 2008

Diphenyl difluoroketone: a curcumin derivative with potent in vivo anticancer activity.

Dharmalingam Subramaniam; Randal May; Sripathi M. Sureban; Katherine B. Lee; Robert J. George; Periannan Kuppusamy; Rama P. Ramanujam; Kálmán Hideg; Brian K. Dieckgraefe; Courtney W. Houchen; Shrikant Anant

Diphenyl difluoroketone (EF24), a molecule having structural similarity to curcumin, was reported to inhibit proliferation of a variety of cancer cells in vitro. However, the efficacy and in vivo mechanism of action of EF24 in gastrointestinal cancer cells have not been investigated. Here, we assessed the in vivo therapeutic effects of EF24 on colon cancer cells. Using hexosaminidase assay, we determined that EF24 inhibits proliferation of HCT-116 and HT-29 colon and AGS gastric adenocarcinoma cells but not of mouse embryo fibroblasts. Furthermore, the cancer cells showed increased levels of activated caspase-3 and increased Bax to Bcl-2 and Bax to Bcl-xL ratios, suggesting that the cells were undergoing apoptosis. At the same time, cell cycle analysis showed that there was an increased number of cells in the G(2)-M phase. To determine the effects of EF24 in vivo, HCT-116 colon cancer xenografts were established in nude mice and EF24 was given i.p. EF24 significantly suppressed the growth of colon cancer tumor xenografts. Immunostaining for CD31 showed that there was a lower number of microvessels in the EF24-treated animals coupled with decreased cyclooxygenase-2, interleukin-8, and vascular endothelial growth factor mRNA and protein expression. Western blot analyses also showed decreased AKT and extracellular signal-regulated kinase activation in the tumors. Taken together, these data suggest that the novel curcumin-related compound EF24 is a potent antitumor agent that induces caspase-mediated apoptosis during mitosis and has significant therapeutic potential for gastrointestinal cancers.


American Journal of Physiology-gastrointestinal and Liver Physiology | 1999

FGF-2 enhances intestinal stem cell survival and its expression is induced after radiation injury

Courtney W. Houchen; Robert J. George; Mark A. Sturmoski; Steven M. Cohn

Fibroblast growth factors (FGFs) have mitogenic activity toward a wide variety of cells of mesenchymal, neuronal, and epithelial origin and regulate events in normal embryonic development, angiogenesis, wound repair, and neoplasia. FGF-2 is expressed in many normal adult tissues and can regulate migration and replication of intestinal epithelial cells in culture. However, little is known about the effects of FGF-2 on intestinal epithelial stem cells during either normal epithelial renewal or regeneration of a functional epithelium after injury. In this study, we investigated the expression of FGF-2 in the mouse small intestine after irradiation and determined the effect of exogenous FGF-2 on crypt stem cell survival after radiation injury. Expression of FGF-2 mRNA and protein began to increase at 12 h after γ-irradiation, and peak levels were observed from 48 to 120 h after irradiation. At all times after irradiation, the higher molecular mass isoform (∼24 kDa) of FGF-2 was the predominant form expressed in the small intestine. Immunohistochemical analysis of FGF-2 expression after radiation injury demonstrated that FGF-2 was predominantly found in the mesenchyme surrounding regenerating crypts. Exogenous recombinant human FGF-2 (rhFGF-2) markedly enhanced crypt stem cell survival when given before irradiation. We conclude that expression of FGF-2 is induced by radiation injury and that rhFGF-2 can enhance crypt stem cell survival after subsequent injury.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2012

A nomenclature for intestinal in vitro cultures

Matthias Stelzner; Michael A. Helmrath; James C.Y. Dunn; Susan J. Henning; Courtney W. Houchen; Calvin J. Kuo; John P. Lynch; Linheng Li; Scott T. Magness; Martin G. Martin; Melissa H. Wong; Jian Yu

Many advances have been reported in the long-term culture of intestinal mucosal cells in recent years. A significant number of publications have described new culture media, cell formations, and growth patterns. Furthermore, it is now possible to study, e.g., the capabilities of isolated stem cells or the interactions between stem cells and mesenchyme. However, at the moment there is significant variation in the way these structures are described and named. A standardized nomenclature would benefit the ability to communicate and compare findings from different laboratories using the different culture systems. To address this issue, members of the NIH Intestinal Stem Cell Consortium herein propose a systematic nomenclature for in vitro cultures of the small and large intestine. We begin by describing the structures that are generated by preparative steps. We then define and describe structures produced in vitro, specifically: enterosphere, enteroid, reconstituted intestinal organoid, induced intestinal organoid, colonosphere, colonoid, and colonic organoid.


Inflammatory Bowel Diseases | 2008

Granulocyte macrophage colony-stimulating factor ameliorates DSS-induced experimental colitis

Satheesh K. Sainathan; Eyad M. Hanna; Qingqing Gong; Kumar S. Bishnupuri; Qizhi Luo; Marco Colonna; Frances V. White; Ed Croze; Courtney W. Houchen; Shrikant Anant; Brian K. Dieckgraefe

Background: Sargramostim, granulocyte macrophage colony‐stimulating factor (GM‐CSF), a hematopoietic growth factor, stimulates cells of the intestinal innate immune system. Clinical trials show that sargramostim induces clinical response and remission in patients with active Crohns disease. To study the mechanism, we examined the effects of GM‐CSF in the dextran sulfate sodium (DSS)‐induced acute colitis model. We hypothesized that GM‐CSF may work through effects on dendritic cells (DCs). Methods: Acute colitis was induced in Balb/c mice by administration of DSS in drinking water. Mice were treated with daily GM‐CSF or phosphate‐buffered saline (PBS). To probe the role of plasmacytoid DCs (pDCs) in the response to GM‐CSF, we further examined the effects of monoclonal antibody 440c, which is specific for a sialic acid‐binding immunoglobulin (Ig)‐like lectin expressed on pDCs. Results: GM‐CSF ameliorates acute DSS‐induced colitis, resulting in significantly improved clinical parameters and histology. Microarray analysis showed reduced expression of proinflammatory genes including TNF‐&agr; and IL1‐&bgr;; the results were further confirmed by real‐time reverse‐transcriptase polymerase chain reaction and serum Bio‐plex analysis. GM‐CSF treatment significantly expands pDCs and type 1 IFN production. Administration of mAb 440c completely blocked the therapeutic effect of GM‐CSF. GM‐CSF is also effective in RAG1−/− mice, demonstrating activity‐independent effects on T and B cells. IFN‐&bgr; administration mimics the therapeutic effect of GM‐CSF in DSS‐treated mice. GM‐CSF increases systemic and mucosal type 1 IFN expression and exhibits synergy with pDC activators, such as microbial cytosine‐phosphate‐guanosine (CpG) DNA. Conclusions: GM‐CSF is effective in the treatment of DSS colitis in a mechanism involving the 440c+ pDC population.


Oncogene | 2008

Translation regulatory factor RBM3 is a proto-oncogene that prevents mitotic catastrophe

Sripathi M. Sureban; Gopalan Natarajan; Randal May; Dharmalingam Subramaniam; Kumar S. Bishnupuri; Aubrey R. Morrison; Brian K. Dieckgraefe; Daniel J. Brackett; Russell G. Postier; Courtney W. Houchen; Shrikant Anant

RNA-binding proteins play a key role in post-transcriptional regulation of mRNA stability and translation. We have identified that RBM3, a translation regulatory protein, is significantly upregulated in human tumors, including a stage-dependent increase in colorectal tumors. Forced RBM3 overexpression in NIH3T3 mouse fibroblasts and SW480 human colon epithelial cells increases cell proliferation and development of compact multicellular spheroids in soft agar suggesting the ability to induce anchorage-independent growth. In contrast, downregulating RBM3 in HCT116 colon cancer cells with specific siRNA decreases cell growth in culture, which was partially overcome when treated with prostaglandin E2, a product of cyclooxygenase (COX)-2 enzyme activity. Knockdown also resulted in the growth arrest of tumor xenografts. We have also identified that RBM3 knockdown increases caspase-mediated apoptosis coupled with nuclear cyclin B1, and phosphorylated Cdc25c, Chk1 and Chk2 kinases, implying that under conditions of RBM3 downregulation, cells undergo mitotic catastrophe. RBM3 enhances COX-2, IL-8 and VEGF mRNA stability and translation. Conversely, RBM3 knockdown results in loss in the translation of these transcripts. These data demonstrate that the RNA stabilizing and translation regulatory protein RBM3 is a novel proto-oncogene that induces transformation when overexpressed and is essential for cells to progress through mitosis.


Journal of Investigative Medicine | 2002

Expression of the Regenerating Gene Family in Inflammatory Bowel Disease Mucosa: Reg Iα Upregulation, Processing, and Antiapoptotic Activity

Brian K. Dieckgraefe; Dan L. Crimmins; Vonnie Landt; Courtney W. Houchen; Shrikant Anant; Rhonda Porche-Sorbet; Jack H. Ladenson

Background The pathophysiology of inflammatory bowel disease (IBD) reflects a balance between mucosal injury related to an ongoing inflammatory process and mucosal reparative mechanisms. Proreparative mucosal factors may offer new therapeutic paradigms. Transcriptional profiling can be applied to identify candidate gene products involved in colonic mucosal regeneration. Methods Resection specimens from patients who underwent colonic resection for IBD or non-IBD indications were analyzed by performing Affymetrix GeneChip hybridization (Affymetrix, Inc., Santa Clara, Calif) and histopathologic scoring. Expression and physiologic processing of Reg Iα, the most highly expressed member of the regenerating (Reg) gene family, was further studied by performing specific immunohistochemistry, protein sequencing, and mass spectroscopy. Results Foregut-derived tissues normally express human Reg proteins with minimal expression in the colon. In the setting of tissue injury associated with IBD, Reg Iα, Reg Iβ, and Reg III mRNA were highly expressed in colonic mucosa. Paired histopathologic scoring demonstrated that Reg expression was not related to the presence or the degree of mucosal inflammation. Studies of the Reg Iα protein revealed evidence of proteolytic cleavage at the N-terminus. In IBD, intact Reg Iα protein was expressed by the metaplastic Paneth granular cell population. Whereas Reg Iα cleaved at the N-terminus, it was also deposited throughout the lamina propria. Reg Iα treatment was shown to reduce epithelial apoptosis that occurred in response to treatment with hydrogen peroxide. Conclusion Ectopic expression, physiologic processing, and directed tissue deposition of Reg Iα are components of the colonic mucosal regenerative response in IBD. Reg Iα may serve to reduce epithelial apoptosis in inflammation.

Collaboration


Dive into the Courtney W. Houchen's collaboration.

Top Co-Authors

Avatar

Randal May

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Sripathi M. Sureban

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dongfeng Qu

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Nathaniel Weygant

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Parthasarathy Chandrakesan

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Naushad Ali

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Brian K. Dieckgraefe

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge