Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sripathi M. Sureban is active.

Publication


Featured researches published by Sripathi M. Sureban.


Stem Cells | 2008

Identification of a Novel Putative Gastrointestinal Stem Cell and Adenoma Stem Cell Marker, Doublecortin and CaM Kinase‐Like‐1, Following Radiation Injury and in Adenomatous Polyposis Coli/Multiple Intestinal Neoplasia Mice

Randal May; Terrence E. Riehl; Clayton R. Hunt; Sripathi M. Sureban; Shrikant Anant; Courtney W. Houchen

In the gut, tumorigenesis arises from intestinal or colonic crypt stem cells. Currently, no definitive markers exist that reliably identify gut stem cells. Here, we used the putative stem cell marker doublecortin and CaM kinase‐like‐1 (DCAMKL‐1) to examine radiation‐induced stem cell apoptosis and adenomatous polyposis coli (APC)/multiple intestinal neoplasia (min) mice to determine the effects of APC mutation on DCAMKL‐1 expression. Immunoreactive DCAMKL‐1 staining was demonstrated in the intestinal stem cell zone. Furthermore, we observed apoptosis of the cells negative for DCAMKL‐1 at 6 hours. We found DNA damage in all the cells in the crypt region, including the DCAMKL‐1‐positive cells. We also observed stem cell apoptosis and mitotic DCAMKL‐1‐expressing cells 24 hours after irradiation. Moreover, in APC/min mice, DCAMKL‐1‐expressing cells were negative for proliferating cell nuclear antigen and nuclear β‐catenin in normal‐appearing intestine. However, β‐catenin was nuclear in DCAMKL‐1‐positive cells in adenomas. Thus, nuclear translocation of β‐catenin distinguishes normal and adenoma stem cells. Targeting DCAMKL‐1 may represent a strategy for developing novel chemotherapeutic agents.


Stem Cells | 2009

Doublecortin and CaM kinase-like-1 and leucine-rich-repeat-containing G-protein-coupled receptor mark quiescent and cycling intestinal stem cells, respectively.

Randal May; Sripathi M. Sureban; Nguyet Hoang; Terrence E. Riehl; Stan Lightfoot; Rama P. Ramanujam; James H. Wyche; Shrikant Anant; Courtney W. Houchen

It is thought that small intestinal epithelia (IE) undergo continuous self‐renewal primarily due to their population of undifferentiated stem cells. These stem cells give rise to transit amplifying (daughter/progenitor) cells, which can differentiate into all mature cell types required for normal gut function. Identification of stem cells in IE is paramount to fully understanding this renewal process. One major obstacle in gastrointestinal stem cell biology has been the lack of definitive markers that identify small intestinal stem cells (ISCs). Here we demonstrate that the novel putative ISC marker doublecortin and CaM kinase‐like‐1 (DCAMKL‐1) is predominantly expressed in quiescent cells in the lower two‐thirds of intestinal crypt epithelium and in occasional crypt‐based columnar cells (CBCs). In contrast, the novel putative stem cell marker leucine‐rich‐repeat‐containing G‐protein‐coupled receptor (LGR5) is observed in rapidly cycling CBCs and in occasional crypt epithelial cells. Furthermore, functionally quiescent DCAMKL‐1+ crypt epithelial cells retain bromo‐deoxyuridine in a modified label retention assay. Moreover, we demonstrate that DCAMKL‐1 is a cell surface expressing protein; DCAMKL‐1+ cells, isolated from the adult mouse small intestine by fluorescence activated cell sorting, self‐renew and ultimately form spheroids in suspension culture. These spheroids formed glandular epithelial structures in the flanks of athymic nude mice, which expressed multiple markers of gut epithelial lineage. Thus, DCAMKL‐1 is a marker of quiescent ISCs and can be distinguished from the cycling stem/progenitors (LGR5+). Moreover, DCAMKL‐1 can be used to isolate normal small intestinal stem cells and represents a novel research tool for regenerative medicine and cancer therapy. STEM CELLS 2009;27:2571–2579


Gastroenterology | 2008

Knockdown of RNA binding protein musashi-1 leads to tumor regression in vivo.

Sripathi M. Sureban; Randal May; Robert J. George; Brian K. Dieckgraefe; Howard L. McLeod; Kumar S. Bishnupuri; Gopalan Natarajan; Shrikant Anant; Courtney W. Houchen

BACKGROUND & AIMS In the gut, tumorigenesis is thought to arise from the stem cell population located near the base of intestinal and colonic crypts. The RNA binding protein musashi-1 (Msi-1) is a putative intestinal and progenitor/stem cell marker. Msi-1 expression is increased during rat brain development and in APC(min/+) mice tumors. This study examined a potential role of Msi-1 in tumorigenesis. METHODS Msi-1 small interfering RNA (siRNA) was administered as a liposomal preparation to HCT116 colon adenocarcinoma xenografts in athymic nude mice and tumor volume was measured. Cell proliferation was assessed by hexosaminidase and 3-(4,5-dimethylthiazol 2-yl)-2,5-diphenyltetrazolium bromide MTT assays. siRNA-transfected cells were subjected to 12 Gy gamma-irradiation. Apoptosis was assessed by immunoreactive activated caspase-3 and mitosis was assessed by phosphorylated histone H3 staining. The tumor xenografts were stained similarly for phosphorylated histone H3, activated caspase-3, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling, Notch-1, and p21(WAF1). Furthermore, siRNA-transfected cells were subjected to cell-cycle analysis and Western blot analyses for Notch-1 and p21(WAF1). RESULTS Knockdown of Msi-1 resulted in tumor growth arrest in xenografts, reduced cancer cell proliferation, and increased apoptosis alone and in combination with radiation injury. siRNA-mediated reduction of Msi-1 lead to mitotic catastrophe in tumor cells. Moreover, there was inhibition of Notch-1 and up-regulation of p21(WAF1) after knockdown of Msi-1. CONCLUSIONS Our results show the involvement of Msi-1 in cancer cell proliferation, inhibition of apoptosis, and mitotic catastrophe, suggesting an important potential mechanism for its role in tumorigenesis.


Cancer Research | 2011

DCAMKL-1 regulates epithelial-mesenchymal transition in human pancreatic cells through a miR-200a-dependent mechanism

Sripathi M. Sureban; Randal May; Stan Lightfoot; Aimee B. Hoskins; Megan R. Lerner; Daniel J. Brackett; Russell G. Postier; Rama P. Ramanujam; Altaf Mohammed; Chinthalapally V. Rao; James H. Wyche; Shrikant Anant; Courtney W. Houchen

Pancreatic cancer is an exceptionally aggressive disease in great need of more effective therapeutic options. Epithelial-mesenchymal transition (EMT) plays a key role in cancer invasion and metastasis, and there is a gain of stem cell properties during EMT. Here we report increased expression of the putative pancreatic stem cell marker DCAMKL-1 in an established KRAS transgenic mouse model of pancreatic cancer and in human pancreatic adenocarcinoma. Colocalization of DCAMKL-1 with vimentin, a marker of mesenchymal lineage, along with 14-3-3 σ was observed within premalignant PanIN lesions that arise in the mouse model. siRNA-mediated knockdown of DCAMKL-1 in human pancreatic cancer cells induced microRNA miR-200a, an EMT inhibitor, along with downregulation of EMT-associated transcription factors ZEB1, ZEB2, Snail, Slug, and Twist. Furthermore, DCAMKL-1 knockdown resulted in downregulation of c-Myc and KRAS through a let-7a microRNA-dependent mechanism, and downregulation of Notch-1 through a miR-144 microRNA-dependent mechanism. These findings illustrate direct regulatory links between DCAMKL-1, microRNAs, and EMT in pancreatic cancer. Moreover, they demonstrate a functional role for DCAMKL-1 in pancreatic cancer. Together, our results rationalize DCAMKL-1 as a therapeutic target for eradicating pancreatic cancers.


Cancer Research | 2008

Diphenyl difluoroketone: a curcumin derivative with potent in vivo anticancer activity.

Dharmalingam Subramaniam; Randal May; Sripathi M. Sureban; Katherine B. Lee; Robert J. George; Periannan Kuppusamy; Rama P. Ramanujam; Kálmán Hideg; Brian K. Dieckgraefe; Courtney W. Houchen; Shrikant Anant

Diphenyl difluoroketone (EF24), a molecule having structural similarity to curcumin, was reported to inhibit proliferation of a variety of cancer cells in vitro. However, the efficacy and in vivo mechanism of action of EF24 in gastrointestinal cancer cells have not been investigated. Here, we assessed the in vivo therapeutic effects of EF24 on colon cancer cells. Using hexosaminidase assay, we determined that EF24 inhibits proliferation of HCT-116 and HT-29 colon and AGS gastric adenocarcinoma cells but not of mouse embryo fibroblasts. Furthermore, the cancer cells showed increased levels of activated caspase-3 and increased Bax to Bcl-2 and Bax to Bcl-xL ratios, suggesting that the cells were undergoing apoptosis. At the same time, cell cycle analysis showed that there was an increased number of cells in the G(2)-M phase. To determine the effects of EF24 in vivo, HCT-116 colon cancer xenografts were established in nude mice and EF24 was given i.p. EF24 significantly suppressed the growth of colon cancer tumor xenografts. Immunostaining for CD31 showed that there was a lower number of microvessels in the EF24-treated animals coupled with decreased cyclooxygenase-2, interleukin-8, and vascular endothelial growth factor mRNA and protein expression. Western blot analyses also showed decreased AKT and extracellular signal-regulated kinase activation in the tumors. Taken together, these data suggest that the novel curcumin-related compound EF24 is a potent antitumor agent that induces caspase-mediated apoptosis during mitosis and has significant therapeutic potential for gastrointestinal cancers.


Oncogene | 2008

Translation regulatory factor RBM3 is a proto-oncogene that prevents mitotic catastrophe

Sripathi M. Sureban; Gopalan Natarajan; Randal May; Dharmalingam Subramaniam; Kumar S. Bishnupuri; Aubrey R. Morrison; Brian K. Dieckgraefe; Daniel J. Brackett; Russell G. Postier; Courtney W. Houchen; Shrikant Anant

RNA-binding proteins play a key role in post-transcriptional regulation of mRNA stability and translation. We have identified that RBM3, a translation regulatory protein, is significantly upregulated in human tumors, including a stage-dependent increase in colorectal tumors. Forced RBM3 overexpression in NIH3T3 mouse fibroblasts and SW480 human colon epithelial cells increases cell proliferation and development of compact multicellular spheroids in soft agar suggesting the ability to induce anchorage-independent growth. In contrast, downregulating RBM3 in HCT116 colon cancer cells with specific siRNA decreases cell growth in culture, which was partially overcome when treated with prostaglandin E2, a product of cyclooxygenase (COX)-2 enzyme activity. Knockdown also resulted in the growth arrest of tumor xenografts. We have also identified that RBM3 knockdown increases caspase-mediated apoptosis coupled with nuclear cyclin B1, and phosphorylated Cdc25c, Chk1 and Chk2 kinases, implying that under conditions of RBM3 downregulation, cells undergo mitotic catastrophe. RBM3 enhances COX-2, IL-8 and VEGF mRNA stability and translation. Conversely, RBM3 knockdown results in loss in the translation of these transcripts. These data demonstrate that the RNA stabilizing and translation regulatory protein RBM3 is a novel proto-oncogene that induces transformation when overexpressed and is essential for cells to progress through mitosis.


PLOS ONE | 2013

DCLK1 Regulates Pluripotency and Angiogenic Factors via microRNA-Dependent Mechanisms in Pancreatic Cancer

Sripathi M. Sureban; Randal May; Dongfeng Qu; Nathaniel Weygant; Parthasarathy Chandrakesan; Naushad Ali; Stan Lightfoot; Panayotis Pantazis; Chinthalapally V. Rao; Russell G. Postier; Courtney W. Houchen

Stem cell pluripotency, angiogenesis and epithelial-mesenchymal transition (EMT) have been shown to be significantly upregulated in pancreatic ductal adenocarcinoma (PDAC) and many other aggressive cancers. The dysregulation of these processes is believed to play key roles in tumor initiation, progression, and metastasis, and is contributory to PDAC being the fourth leading cause of cancer-related deaths in the US. The tumor suppressor miRNA miR-145 downregulates critical pluripotency factors and oncogenes and results in repressed metastatic potential in PDAC. Additionally, the miR-200 family regulates several angiogenic factors which have been linked to metastasis in many solid tumors. We have previously demonstrated that downregulation of DCLK1 can upregulate critical miRNAs in both in vitro and in vivo cancer models and results in downregulation of c-MYC, KRAS, NOTCH1 and EMT-related transcription factors. A recent report has also shown that Dclk1 can distinguish between normal and tumor stem cells in Apc min/+ mice and that ablation of Dclk1+ cells resulted in regression of intestinal polyps without affecting homeostasis. Here we demonstrate that the knockdown of DCLK1 using poly(lactide-co-glycolide)-encapsulated-DCLK1-siRNA results in AsPC1 tumor growth arrest. Examination of xenograft tumors revealed, (a) increased miR-145 which results in decreased pluripotency maintenance factors OCT4, SOX2, NANOG, KLF4 as well as KRAS and RREB1; (b) increased let-7a which results in decreased pluripotency factor LIN28B; and (c) increased miR-200 which results in decreased VEGFR1, VEGFR2 and EMT-related transcription factors ZEB1, ZEB2, SNAIL and SLUG. Specificity of DCLK1 post-transcriptional regulation of the downstream targets of miR-145, miR-200 and let-7a was accomplished utilizing a luciferase-based reporter assay. We conclude that DCLK1 plays a significant master regulatory role in pancreatic tumorigenesis through the regulation of multiple tumor suppressor miRNAs and their downstream pro-tumorigenic pathways. This novel concept of targeting DCLK1 alone has several advantages over targeting single pathway or miRNA-based therapies for PDAC.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2010

Identification of a novel putative pancreatic stem/progenitor cell marker DCAMKL-1 in normal mouse pancreas

Randal May; Sripathi M. Sureban; Stan Lightfoot; Aimee B. Hoskins; Daniel J. Brackett; Russell G. Postier; Rama P. Ramanujam; Chinthalapally V. Rao; James H. Wyche; Shrikant Anant; Courtney W. Houchen

Stem cells are critical in maintaining adult homeostasis and have been proposed to be the origin of many solid tumors, including pancreatic cancer. Here we demonstrate the expression patterns of the putative intestinal stem cell marker DCAMKL-1 in the pancreas of uninjured C57BL/6 mice compared with other pancreatic stem/progenitor cell markers. We then determined the viability of isolated pancreatic stem/progenitor cells in isotransplantation assays following DCAMKL-1 antibody-based cell sorting. Sorted cells were grown in suspension culture and injected into the flanks of athymic nude mice. Here we report that DCAMKL-1 is expressed in the main pancreatic duct epithelia and islets, but not within acinar cells. Coexpression was observed with somatostatin, NGN3, and nestin, but not glucagon or insulin. Isolated DCAMKL-1+ cells formed spheroids in suspension culture and induced nodule formation in isotransplantation assays. Analysis of nodules demonstrated markers of early pancreatic development (PDX-1), glandular epithelium (cytokeratin-14 and Ep-CAM), and isletlike structures (somatostatin and secretin). These data taken together suggest that DCAMKL-1 is a novel putative stem/progenitor marker, can be used to isolate normal pancreatic stem/progenitors, and potentially regenerates pancreatic tissues. This may represent a novel tool for regenerative medicine and a target for anti-stem cell-based therapeutics in pancreatic cancer.


Journal of Virology | 2011

Hepatitis C Virus-Induced Cancer Stem Cell-Like Signatures in Cell Culture and Murine Tumor Xenografts

Naushad Ali; Heba Allam; Randal May; Sripathi M. Sureban; Michael S. Bronze; Ted Bader; Shahid Umar; Srikant Anant; Courtney W. Houchen

ABSTRACT Hepatitis C virus (HCV) infection is a prominent risk factor for the development of hepatocellular carcinoma (HCC). Similar to most solid tumors, HCCs are believed to contain poorly differentiated cancer stem cell-like cells (CSCs) that initiate tumorigenesis and confer resistance to chemotherapy. In these studies, we demonstrate that the expression of an HCV subgenomic replicon in cultured cells results in the acquisition of CSC traits. These traits include enhanced expression of doublecortin and CaM kinase-like-1 (DCAMKL-1), Lgr5, CD133, α-fetoprotein, cytokeratin-19 (CK19), Lin28, and c-Myc. Conversely, curing of the replicon from these cells results in diminished expression of these factors. The putative stem cell marker DCAMKL-1 is also elevated in response to the overexpression of a cassette of pluripotency factors. The DCAMKL-1-positive cells isolated from hepatoma cell lines by fluorescence-activated cell sorting (FACS) form spheroids in Matrigel. The HCV RNA abundance and NS5B levels are significantly reduced by the small interfering RNA (siRNA)-led depletion of DCAMKL-1. We further demonstrate that HCV replicon-expressing cells initiate distinct tumor phenotypes compared to the tumors initiated by parent cells lacking the replicon. This HCV-induced phenotype is characterized by high-level expression/coexpression of DCAMKL-1, CK19, α-fetoprotein, and active c-Src. The results obtained by the analysis of liver tissues from HCV-positive patients and liver tissue microarrays reiterate these observations. In conclusion, chronic HCV infection appears to predispose cells toward the path of acquiring cancer stem cell-like traits by inducing DCAMKL-1 and hepatic progenitor and stem cell-related factors. DCAMKL-1 also represents a novel cellular target for combating HCV-induced hepatocarcinogenesis.


Cancer Letters | 2014

XMD8-92 inhibits pancreatic tumor xenograft growth via a DCLK1-dependent mechanism

Sripathi M. Sureban; Randal May; Nathaniel Weygant; Dongfeng Qu; Parthasarathy Chandrakesan; Eddie Bannerman-Menson; Naushad Ali; Panayotis Pantazis; Christoph B. Westphalen; Timothy C. Wang; Courtney W. Houchen

XMD8-92 is a kinase inhibitor with anti-cancer activity against lung and cervical cancers, but its effect on pancreatic ductal adenocarcinoma (PDAC) remains unknown. Doublecortin-like kinase1 (DCLK1) is upregulated in various cancers including PDAC. In this study, we showed that XMD8-92 inhibits AsPC-1 cancer cell proliferation and tumor xenograft growth. XMD8-92 treated tumors demonstrated significant downregulation of DCLK1 and several of its downstream targets (including c-MYC, KRAS, NOTCH1, ZEB1, ZEB2, SNAIL, SLUG, OCT4, SOX2, NANOG, KLF4, LIN28, VEGFR1, and VEGFR2) via upregulation of tumor suppressor miRNAs let-7a, miR-144, miR-200a-c, and miR-143/145; it did not however affect BMK1 downstream genes p21 and p53. These data taken together suggest that XMD8-92 treatment results in inhibition of DCLK1 and downstream oncogenic pathways (EMT, pluripotency, angiogenesis and anti-apoptotic), and is a promising chemotherapeutic agent against PDAC.

Collaboration


Dive into the Sripathi M. Sureban's collaboration.

Top Co-Authors

Avatar

Courtney W. Houchen

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Randal May

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Dongfeng Qu

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Nathaniel Weygant

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Parthasarathy Chandrakesan

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Naushad Ali

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William L. Berry

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael S. Bronze

University of Oklahoma Health Sciences Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge