Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lauren P. Wills is active.

Publication


Featured researches published by Lauren P. Wills.


Journal of Pharmacology and Experimental Therapeutics | 2013

cGMP-Selective Phosphodiesterase Inhibitors Stimulate Mitochondrial Biogenesis and Promote Recovery from Acute Kidney Injury

Ryan M. Whitaker; Lauren P. Wills; Stallons Lj; Rick G. Schnellmann

Recent studies demonstrate that mitochondrial dysfunction is a mediator of acute kidney injury (AKI). Consequently, restoration of mitochondrial function after AKI may be key to the recovery of renal function. Mitochondrial function can be restored through the generation of new, functional mitochondria in a process called mitochondrial biogenesis (MB). Despite its potential therapeutic significance, very few pharmacological agents have been identified to induce MB. To examine the efficacy of phosphodiesterase (PDE) inhibitors (PDE3: cAMP and cGMP activity; and PDE4: cAMP activity) in stimulating MB, primary cultures of renal proximal tubular cells (RPTCs) were treated with a panel of inhibitors for 24 hours. PDE3, but not PDE4, inhibitors increased the FCCP-uncoupled oxygen consumption rate (OCR), a marker of MB. Exposure of RPTCs to the PDE3 inhibitors, cilostamide and trequinsin, for 24 hours increased peroxisome proliferator–activated receptor γ coactivator-1α, and multiple mitochondrial electron transport chain genes. Cilostamide and trequinsin also increased mRNA expression of mitochondrial genes and mitochondrial DNA copy number in mice renal cortex. Consistent with these experiments, 8-Br-cGMP increased FCCP-uncoupled OCR and mitochondrial gene expression, whereas 8-Br-cAMP had no effect. The cGMP-specific PDE5 inhibitor sildenafil also induced MB in RPTCs and in vivo in mouse renal cortex. Treatment of mice with sildenafil after folic acid–induced AKI promoted restoration of MB and renal recovery. These data provide strong evidence that specific PDE inhibitors that increase cGMP are inducers of MB in vitro and in vivo, and suggest their potential efficacy in AKI and other diseases characterized by mitochondrial dysfunction and suppressed MB.


Journal of Pharmacology and Experimental Therapeutics | 2012

The β2-Adrenoceptor Agonist Formoterol Stimulates Mitochondrial Biogenesis

Lauren P. Wills; Richard E. Trager; Gyda C. Beeson; Christopher C. Lindsey; Yuri K. Peterson; Craig Beeson; Rick G. Schnellmann

Mitochondrial dysfunction is a common mediator of disease and organ injury. Although recent studies show that inducing mitochondrial biogenesis (MB) stimulates cell repair and regeneration, only a limited number of chemicals are known to induce MB. To examine the impact of the β-adrenoceptor (β-AR) signaling pathway on MB, primary renal proximal tubule cells (RPTC) and adult feline cardiomyocytes were exposed for 24 h to multiple β-AR agonists: isoproterenol (nonselective β-AR agonist), (±)-(R*,R*)-[4-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]phenoxy] acetic acid sodium hydrate (BRL 37344) (selective β3-AR agonist), and formoterol (selective β2-AR agonist). The Seahorse Biosciences (North Billerica, MA) extracellular flux analyzer was used to quantify carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP)-uncoupled oxygen consumption rate (OCR), a marker of maximal electron transport chain activity. Isoproterenol and BRL 37244 did not alter mitochondrial respiration at any of the concentrations examined. Formoterol exposure resulted in increases in both FCCP-uncoupled OCR and mitochondrial DNA (mtDNA) copy number. The effect of formoterol on OCR in RPTC was inhibited by the β-AR antagonist propranolol and the β2-AR inverse agonist 3-(isopropylamino)-1-[(7-methyl-4-indanyl)oxy]butan-2-ol hydrochloride (ICI-118,551). Mice exposed to formoterol for 24 or 72 h exhibited increases in kidney and heart mtDNA copy number, peroxisome proliferator-activated receptor γ coactivator 1α, and multiple genes involved in the mitochondrial electron transport chain (F0 subunit 6 of transmembrane F-type ATP synthase, NADH dehydrogenase subunit 1, NADH dehydrogenase subunit 6, and NADH dehydrogenase [ubiquinone] 1β subcomplex subunit 8). Cheminformatic modeling, virtual chemical library screening, and experimental validation identified nisoxetine from the Sigma Library of Pharmacologically Active Compounds and two compounds from the ChemBridge DIVERSet that increased mitochondrial respiratory capacity. These data provide compelling evidence for the use and development of β2-AR ligands for therapeutic MB.


Current protocols in pharmacology | 2012

Measurement of Cell Death in Mammalian Cells

Brian S. Cummings; Lauren P. Wills; Rick G. Schnellmann

Methods for assessing mammalian cell death are presented in this unit. The unit is divided into six sections: (1) a brief overview of cytotoxicity and pathways of cell death, (2) a method to measure cell death using lactate dehydrogenase (LDH) release as a marker of membrane integrity, (3) a flow cytometry method that simultaneously measures two types of cell death, necrosis, and apoptosis, (4) use of fluorescence microscopy and nuclear morphology to assess apoptosis and necrosis, (5) the use of multi‐well plates and high‐content analysis imaging systems to assess nuclear morphology, and (6) a discussion of the use of cytotoxicity assays to determine the mechanisms of cell death. Curr. Protoc. Pharmacol. 56:12.8.1‐12.8.24.


Journal of The American Society of Nephrology | 2014

Formoterol Restores Mitochondrial and Renal Function after Ischemia-Reperfusion Injury

Sean R. Jesinkey; Jason A. Funk; L. Jay Stallons; Lauren P. Wills; Judit Megyesi; Craig Beeson; Rick G. Schnellmann

Mitochondrial biogenesis may be an adaptive response necessary for meeting the increased metabolic and energy demands during organ recovery after acute injury, and renal mitochondrial dysfunction has been implicated in the pathogenesis of AKI. We proposed that stimulation of mitochondrial biogenesis 24 hours after ischemia/reperfusion (I/R)-induced AKI, when renal dysfunction is maximal, would accelerate recovery of mitochondrial and renal function in mice. We recently showed that formoterol, a potent, highly specific, and long-acting β2-adrenergic agonist, induces renal mitochondrial biogenesis in naive mice. Animals were subjected to sham or I/R-induced AKI, followed by once-daily intraperitoneal injection with vehicle or formoterol beginning 24 hours after surgery and continuing through 144 hours after surgery. Treatment with formoterol restored renal function, rescued renal tubules from injury, and diminished necrosis after I/R-induced AKI. Concomitantly, formoterol stimulated mitochondrial biogenesis and restored the expression and function of mitochondrial proteins. Taken together, these results provide proof of principle that a novel drug therapy to treat AKI, and potentially other acute organ failures, works by restoring mitochondrial function and accelerating the recovery of renal function after injury has occurred.


Journal of The American Society of Nephrology | 2011

Telomeres and Telomerase in Renal Health

Lauren P. Wills; Rick G. Schnellmann

The role of telomeres and telomerase in human biology has been studied since the early 1990s because telomere attrition is implicated in various diseases including cardiovascular dysfunction, carcinogenesis, and the progression of acute kidney injury. Telomeric length is a reliable indicator of intrinsic biologic age and a surrogate for the mitotic clock. Because the prevalence of chronic kidney disease increases with age, telomere length and telomerase activity may play a role in its progression.


Bioorganic & Medicinal Chemistry Letters | 2013

β2-Adrenoceptor agonists in the regulation of mitochondrial biogenesis

Yuri K. Peterson; Robert B. Cameron; Lauren P. Wills; Richard E. Trager; Chris Lindsey; Craig Beeson; Rick G. Schnellmann

The stimulation of mitochondrial biogenesis (MB) via cell surface G-protein coupled receptors is a promising strategy for cell repair and regeneration. Here we report the specificity and chemical rationale of a panel of β2-adrenoceptor agonists with regards to MB. Using primary cultures of renal cells, a diverse panel of β2-adrenoceptor agonists elicited three distinct phenotypes: full MB, partial MB, and non-MB. Full MB compounds had efficacy in the low nanomolar range and represent two chemical scaffolds containing three distinct chemical clusters. Interestingly, the MB phenotype did not correlate with reported receptor affinity or chemical similarity. Chemical clusters were then subjected to pharmacophore modeling creating two models with unique and distinct features, consisting of five conserved amongst full MB compounds were identified. The two discrete pharmacophore models were coalesced into a consensus pharmacophore with four unique features elucidating the spatial and chemical characteristics required to stimulate MB.


Toxicology and Applied Pharmacology | 2013

High-throughput respirometric assay identifies predictive toxicophore of mitochondrial injury

Lauren P. Wills; Gyda C. Beeson; Richard E. Trager; Christopher C. Lindsey; Craig Beeson; Yuri K. Peterson; Rick G. Schnellmann

Many environmental chemicals and drugs negatively affect human health through deleterious effects on mitochondrial function. Currently there is no chemical library of mitochondrial toxicants, and no reliable methods for predicting mitochondrial toxicity. We hypothesized that discrete toxicophores defined by distinct chemical entities can identify previously unidentified mitochondrial toxicants. We used a respirometric assay to screen 1760 compounds (5 μM) from the LOPAC and ChemBridge DIVERSet libraries. Thirty-one of the assayed compounds decreased uncoupled respiration, a stress test for mitochondrial dysfunction, prior to a decrease in cell viability and reduced the oxygen consumption rate in isolated mitochondria. The mitochondrial toxicants were grouped by chemical similarity and two clusters containing four compounds each were identified. Cheminformatic analysis of one of the clusters identified previously uncharacterized mitochondrial toxicants from the ChemBridge DIVERSet. This approach will enable the identification of mitochondrial toxicants and advance the prediction of mitochondrial toxicity for both drug discovery and risk assessment.


Current protocols in pharmacology | 2004

UNIT 12.8 Measurement of Cell Death in Mammalian Cells

Brian S. Cummings; Lauren P. Wills; Rick G. Schnellmann

This unit presents methods used to assess cell death in mammalian cells. The unit is divided into five sections: (1) a brief overview of cytotoxicity and pathways of cell death, (2) an improved method to measure cell death using lactate dehydrogenase (LDH) release as a marker of membrane integrity, (3) a flow cytometry method that simultaneously measures two types of cell death, oncosis and apoptosis, (4) use of nuclear morphology to assess apoptosis and oncosis, and (5) a brief discussion of the use of cytotoxicity assays to determine the mechanisms of cell death.


Toxicological Sciences | 2015

Assessment of ToxCast Phase II for Mitochondrial Liabilities Using a High-Throughput Respirometric Assay

Lauren P. Wills; Gyda C. Beeson; Douglas B. Hoover; Rick G. Schnellmann; Craig Beeson

Previous high-throughput screens to identify mitochondrial toxicants used immortalized cell lines and focused on changes in mitochondrial membrane potential, which may not be sufficient and do not identify different types of mitochondrial dysfunction. Primary cultures of renal proximal tubule cells (RPTC) were examined with the Seahorse Extracellular Flux Analyzer to screen 676 compounds (5 μM; 1 h) from the ToxCast Phase II library for mitochondrial toxicants. Of the 676 compounds, 19 were classified as cytotoxicants, 376 were electron transport chain (ETC) inhibitors, and 5 were uncouplers. The remaining 276 compounds were examined after a 5-h exposure to identify slower acting mitochondrial toxicants. This experiment identified 3 cytotoxicants, 110 ETC inhibitors, and 163 compounds with no effect. A subset of the ToxCast Phase II library was also examined in immortalized human renal cells (HK2) to determine differences in susceptibility to mitochondrial toxicity. Of the 131 RPTC ETC inhibitors tested, only 14 were ETC inhibitors in HK2 cells. Of the 5 RPTC uncouplers, 1 compound was an uncoupler in HK2 cells. These results demonstrate that 73% (491/676) of the compounds in the ToxCast Phase II library compounds exhibit RPTC mitochondrial toxicity, overwhelmingly ETC inhibition. In contrast, renal HK2 cells are markedly less sensitive and only identified 6% of the compounds as mitochondrial toxicants. We suggest caution is needed when studying mitochondrial toxicity in immortalized cell lines. This information will provide mechanisms and chemical-based criteria for assessing and predicting mitochondrial liabilities of new drugs, consumer products, and environmental agents.


Journal of Pharmacology and Experimental Therapeutics | 2016

5-HT2 Receptor Regulation of Mitochondrial Genes: Unexpected Pharmacological Effects of Agonists and Antagonists

Jennifer L. Harmon; Lauren P. Wills; Caitlin E. McOmish; Elena Y. Demireva; Jay A. Gingrich; Craig Beeson; Rick G. Schnellmann

In acute organ injuries, mitochondria are often dysfunctional, and recent research has revealed that recovery of mitochondrial and renal functions is accelerated by induction of mitochondrial biogenesis (MB). We previously reported that the nonselective 5-HT2 receptor agonist DOI [1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine] induced MB in renal proximal tubular cells (RPTCs). The goal of this study was to determine the role of 5-HT2 receptors in the regulation of mitochondrial genes and oxidative metabolism in the kidney. The 5-HT2C receptor agonist CP-809,101 [2-[(3-chlorophenyl)methoxy]-6-(1-piperazinyl)pyrazine] and antagonist SB-242,084 [6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxyamide dihydrochloride] were used to examine the induction of renal mitochondrial genes and oxidative metabolism in RPTCs and in mouse kidneys in the presence and absence of the 5-HT2C receptor. Unexpectedly, both CP-809,101 and SB-242,084 increased RPTC respiration and peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α) mRNA expression in RPTCs at 1–10 nM. In addition, CP-809,101 and SB-242,084 increased mRNA expression of PGC-1α and the mitochondrial proteins NADH dehydrogenase subunit 1 and NADH dehydrogenase (ubiquinone) β subcomplex 8 in mice. These compounds increased mitochondrial genes in RPTCs in which the 5-HT2C receptor was downregulated with small interfering RNA and in the renal cortex of mice lacking the 5-HT2C receptor. By contrast, the ability of these compounds to increase PGC-1α mRNA and respiration was blocked in RPTCs treated with 5-HT2A receptor small interfering RNA or the 5-HT2A receptor antagonist eplivanserin. In addition, the 5-HT2A receptor agonist NBOH-2C-CN [4-[2-[[(2-hydroxyphenyl)methyl]amino]ethyl]-2,5-dimethoxybenzonitrile] increased RPTC respiration at 1–100 nM. These results suggest that agonism of the 5-HT2A receptor induces MB and that the classic 5-HT2C receptor agonist CP-809,101 and antagonist SB-242,084 increase mitochondrial genes and oxidative metabolism through the 5-HT2A receptor. To our knowledge, this is the first report that links 5-HT2A receptor agonism to mitochondrial function.

Collaboration


Dive into the Lauren P. Wills's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig Beeson

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Gyda C. Beeson

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Richard E. Trager

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Yuri K. Peterson

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher C. Lindsey

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Douglas B. Hoover

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Chris Lindsey

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge