Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig D. H. Sherman is active.

Publication


Featured researches published by Craig D. H. Sherman.


Royal Society of London. Proceedings B. Biological Sciences; 257(1637), pp 971-978 (2008) | 2008

Males with high genetic similarity to females sire more offspring in sperm competition in Peron's tree frog Litoria peronii

Craig D. H. Sherman; E Wapstra; Tobias Uller; Mats Olsson

Recent work has confirmed that genetic compatibility among mates can be an important determinant of siring success in sperm competition experiments and in free-ranging populations. Most of this work points towards mate choice of less related mates. However, there may also be the potential for mate choice for intermediate or even genetically similar mates to prevent outbreeding depression or hybridization with closely related taxa. We studied relatedness effects on post-copulatory gametic choice and/or sperm competition in an external fertilizer, Perons tree frog (Litoria peronii), since external fertilizers offer exceptional control in order to test gametic interaction effects on probability of paternity and zygote viability. Sperm competition experiments were done blindly with respect to genetic relatedness among males and females. Thereafter, paternity of offspring was assigned using eight microsatellite loci. Three hybridization trials between L. peronii and a closely related sympatric species Litoria tyleri were also carried out. In the sperm competition trials, males that are more genetically similar to the female achieved higher siring success compared with less genetically similar males. The hybridization trials confirmed that the two species can interbreed and we suggest that the risk of hybridization may contribute to selection benefits for genetically more similar males at fertilization. To our knowledge, this study is the first to show evidence for post-copulatory selection of sperm from genetically more similar individuals within a natural population.


The Biological Bulletin | 2013

Sexual Selection and the Evolution of Egg-Sperm Interactions in Broadcast-Spawning Invertebrates

Jonathan P. Evans; Craig D. H. Sherman

Many marine invertebrate taxa are broadcast spawners, where multiple individuals release their gametes into the water for external fertilization, often in the presence of gametes from heterospecifics. Consequently, sperm encounter the considerable challenges of locating and fertilizing eggs from conspecific females. To overcome these challenges, many taxa exhibit species-specific attraction of sperm toward eggs through chemical signals released from eggs (sperm chemotaxis) and species-specific gamete recognition proteins (GRPs) that mediate compatibility of gametes at fertilization. In this prospective review, we highlight these selective forces, but also emphasize the role that sexual selection, manifested through sperm competition, cryptic female choice, and evolutionary conflicts of interest between the sexes (sexual conflict), can also play in mediating the action of egg chemoattractants and GRPs, and thus individual reproductive fitness. Furthermore, we explore patterns of selection at the level of gametes (sperm phenotype, gamete plasticity, and egg traits) to identify putative traits targeted by sexual selection in these species. We conclude by emphasizing the excellent, but relatively untapped, potential of broadcast-spawning marine invertebrates as model systems to illuminate several areas of research in post-mating sexual selection.


Coral Reefs | 2006

Asexual reproduction does not produce clonal populations of the brooding coral Pocillopora damicornis on the Great Barrier Reef, Australia

Craig D. H. Sherman; David J. Ayre; Karen J. Miller

We have investigated the relationship between genotypic diversity, the mode of production of brooded larvae and disturbance in a range of reef habitats, in order to resolve the disparity between the reproductive mode and population structure reported for the brooding coral Pocillopora damicornis. Within 14 sites across six habitats, the ratio of the observed (Go) to the expected (Ge) genotypic diversity ranged from 69 to 100% of that expected for random mating. At three other sites in two habitats the Go/Ge ranged from 35 to 53%. Two of these sites were recently bleached, suggesting that asexual recruitment may be favoured after disturbance. Nevertheless, our data suggest that brooded larvae, from each of five habitats surveyed, were asexually produced. While clonal recruitment may be important in disturbed habitats, the lack of clonality detected, both in this and earlier surveys of 40 other sites, implies that a disturbance is normally insufficient to explain this species’ continued investment in clonal reproduction.


Heredity | 2008

Mating system variation in the hermaphroditic brooding coral, Seriatopora hystrix

Craig D. H. Sherman

Self-compatible, hermaphroditic marine invertebrates have the potential to self-fertilize in the absence of mates or under sperm-limited conditions, and outcross when sperm is available from a variety of males. Hence, many hermaphroditic marine invertebrates may have evolved mixed-mating systems that involve facultative self-fertilization. Such mixed-mating strategies are well documented for plants but have rarely been investigated in animals. Here, I use allozyme markers to make estimates of selfing from population surveys of reef slope and reef flat sites, and contrast this with direct estimates of selfing from progeny-array analysis, for the brooding coral Seriatopora hystrix. Consistent heterozygote deficits previously reported for S. hystrix suggests that inbreeding (including the extreme of selfing) may be common in this species. I detected significant levels of inbreeding within populations (FIS=0.48) and small but significant differentiation among all sites (FST=0.04). I detected no significant differentiation among habitats (FHT=0.009) though among site differentiation did occur within the reef slope habitat (FSH=0.06), but not within the reef flat habitat (FSH=0.015). My direct estimates of outcrossing for six colonies and their progeny from a single reef flat site revealed an intermediate value (tm (±s.d.)=0.53±0.20). Inbreeding coefficients calculated from progeny arrays (Fe=0.31) were similar to indirect estimates based on adult genotype frequencies for that site (FIS=0.38). This study confirms that the mating system of this brooding coral is potentially variable, with both outcrossing and selfing.


Ecology and Evolution | 2014

Resilience of Zostera muelleri seagrass to small-scale disturbances: the relative importance of asexual versus sexual recovery.

Peter I. Macreadie; Paul H. York; Craig D. H. Sherman

Resilience is the ability of an ecosystem to recover from disturbance without loss of essential function. Seagrass ecosystems are key marine and estuarine habitats that are under threat from a variety of natural and anthropogenic disturbances. The ability of these ecosystems to recovery from disturbance will to a large extent depend on the internsity and scale of the disturbance, and the relative importance of sexual versus asexual reproduction within populations. Here, we investigated the resilience of Zostera muelleri seagrass (Syn. Zostera capricorni) to small-scale disturbances at four locations in Lake Macquarie – Australias largest coastal lake – and monitored recovery over a 65-week period. Resilience of Z. muelleri varied significantly with disturbance intensity; Z. muelleri recovered rapidly (within 2 weeks) from low-intensity disturbance (shoot loss), and rates of recovery appeared related to initial shoot length. Recovery via rhizome encroachment (asexual regeneration) from high-intensity disturbance (loss of entire plant) varied among locations, ranging from 18-35 weeks, whereas the ability to recover was apparently lost (at least within the time frame of this study) when recovery depended on sexual regeneration, suggesting that seeds do not provide a mechanism of recovery against intense small-scale disturbances. The lack of sexual recruits into disturbed sites is surprising as our initial surveys of genotypic diversity (using nine polymorphic microsatellite loci) at these location indicate that populations are maintained by a mix of sexual and asexual reproduction (genotypic diversity [R] varied from 0.24 to 0.44), and populations consisted of a mosaic of genotypes with on average 3.6 unique multilocus genotypes per 300 mm diameter plot. We therefore conclude that Z. muelleri populations within Lake Macquarie rely on clonal growth to recover from small-scale disturbances and that ongoing sexual recruitment by seeds into established seagrass beds (as opposed to bare areas arising from disturbance) must be the mechanism responsible for maintaining the observed mixed genetic composition of Z. muelleri seagrass meadows.


Evolution | 2008

FINE-SCALE ADAPTATION IN A CLONAL SEA ANEMONE

Craig D. H. Sherman; David J. Ayre

Abstract Local adaptation in response to fine-scale spatial heterogeneity is well documented in terrestrial ecosystems. In contrast, in marine environments local adaptation has rarely been documented or rigorously explored. This may reflect real or anticipated effects of genetic homogenization, resulting from widespread dispersal in the sea. However, evolutionary theory predicts that for the many benthic species with complex life histories that include both sexual and asexual phases, each parental habitat patch should become dominated by the fittest and most competitive clones. In this study we used genotypic mapping to show that within headlands, clones of the sea anemone Actinia tenebrosa show restricted distributions to specific habitats despite the potential for more widespread dispersal. On these same shores we used reciprocal transplant experiments that revealed strikingly better performance of clones within their natal rather than foreign habitats as judged by survivorship, asexual fecundity, and growth. These findings highlight the importance of selection for fine-scale environmental adaptation in marine taxa and imply that the genotypic structure of populations reflects extensive periods of interclonal competition and site-specific selection.


Marine Environmental Research | 2017

Identifying knowledge gaps in seagrass research and management: an Australian perspective

Paul H. York; Timothy M. Smith; Rob Coles; S.A. McKenna; Rod Martin Connolly; Andrew D. Irving; Emma L. Jackson; Kathryn McMahon; John W. Runcie; Craig D. H. Sherman; Brooke K. Sullivan; Stacy M. Trevathan-Tackett; Kasper Elgetti Brodersen; Alex Carter; Carolyn J. Ewers; Paul S. Lavery; Chris Roelfsema; Elizabeth A. Sinclair; Simone Strydom; Jason E. Tanner; Kor Jent van Dijk; Fiona Y. Warry; Michelle Waycott; Sam Whitehead

Seagrass species form important marine and estuarine habitats providing valuable ecosystem services and functions. Coastal zones that are increasingly impacted by anthropogenic development have experienced substantial declines in seagrass abundance around the world. Australia, which has some of the worlds largest seagrass meadows and is home to over half of the known species, is not immune to these losses. In 1999 a review of seagrass ecosystems knowledge was conducted in Australia and strategic research priorities were developed to provide research direction for future studies and management. Subsequent rapid evolution of seagrass research and scientific methods has led to more than 70% of peer reviewed seagrass literature being produced since that time. A workshop was held as part of the Australian Marine Sciences Association conference in July 2015 in Geelong, Victoria, to update and redefine strategic priorities in seagrass research. Participants identified 40 research questions from 10 research fields (taxonomy and systematics, physiology, population biology, sediment biogeochemistry and microbiology, ecosystem function, faunal habitats, threats, rehabilitation and restoration, mapping and monitoring, management tools) as priorities for future research on Australian seagrasses. Progress in research will rely on advances in areas such as remote sensing, genomic tools, microsensors, computer modeling, and statistical analyses. A more interdisciplinary approach will be needed to facilitate greater understanding of the complex interactions among seagrasses and their environment.


BMC Medical Genomics | 2014

Identification of novel therapeutics for complex diseases from genome-wide association data

Mani P Grover; Sara Ballouz; Kaavya A Mohanasundaram; Richard A. George; Craig D. H. Sherman; Tamsyn M. Crowley; Merridee A. Wouters

BackgroundHuman genome sequencing has enabled the association of phenotypes with genetic loci, but our ability to effectively translate this data to the clinic has not kept pace. Over the past 60 years, pharmaceutical companies have successfully demonstrated the safety and efficacy of over 1,200 novel therapeutic drugs via costly clinical studies. While this process must continue, better use can be made of the existing valuable data. In silico tools such as candidate gene prediction systems allow rapid identification of disease genes by identifying the most probable candidate genes linked to genetic markers of the disease or phenotype under investigation. Integration of drug-target data with candidate gene prediction systems can identify novel phenotypes which may benefit from current therapeutics. Such a drug repositioning tool can save valuable time and money spent on preclinical studies and phase I clinical trials.MethodsWe previously used Gentrepid (http://www.gentrepid.org) as a platform to predict 1,497 candidate genes for the seven complex diseases considered in the Wellcome Trust Case-Control Consortium genome-wide association study; namely Type 2 Diabetes, Bipolar Disorder, Crohns Disease, Hypertension, Type 1 Diabetes, Coronary Artery Disease and Rheumatoid Arthritis. Here, we adopted a simple approach to integrate drug data from three publicly available drug databases: the Therapeutic Target Database, the Pharmacogenomics Knowledgebase and DrugBank; with candidate gene predictions from Gentrepid at the systems level.ResultsUsing the publicly available drug databases as sources of drug-target association data, we identified a total of 428 candidate genes as novel therapeutic targets for the seven phenotypes of interest, and 2,130 drugs feasible for repositioning against the predicted novel targets.ConclusionsBy integrating genetic, bioinformatic and drug data, we have demonstrated that currently available drugs may be repositioned as novel therapeutics for the seven diseases studied here, quickly taking advantage of prior work in pharmaceutics to translate ground-breaking results in genetics to clinical treatments.


Biology Letters | 2009

Consistent male-male paternity differences across female genotypes.

Craig D. H. Sherman; E Wapstra; Mats Olsson

In a recent paper, we demonstrated that male–female genetic relatedness determines male probability of paternity in experimental sperm competition in the Perons tree frog (Litoria peronii), with a more closely related male outcompeting his rival. Here, we test the hypothesis that a male–male difference in siring success with one female significantly predicts the corresponding difference in siring success with another female. With male sperm concentration held constant, and the proportion of viable sperm controlled statistically, the male–male difference in siring success with one female strongly predicted the corresponding difference in siring success with another female, and alone explained more than 62 per cent of the variance in male–male siring differences. This study demonstrates that male siring success is primarily dictated by among-male differences in innate siring success with less influence of male–female relatedness.


PLOS ONE | 2015

De Novo Assembly and Characterization of the Invasive Northern Pacific Seastar Transcriptome.

Mark F. Richardson; Craig D. H. Sherman

Invasive species are a major threat to global biodiversity but can also serve as valuable model systems to examine important evolutionary processes. While the ecological aspects of invasions have been well documented, the genetic basis of adaptive change during the invasion process has been hampered by a lack of genomic resources for the majority of invasive species. Here we report the first larval transcriptomic resource for the Northern Pacific Seastar, Asterias amurensis, an invasive marine predator in Australia. Approximately 117.5 million 100 base-pair (bp) paired-end reads were sequenced from a single RNA-Seq library from a pooled set of full-sibling A. amurensis bipinnaria larvae. We evaluated the efficacy of a pre-assembly error correction pipeline on subsequent de novo assembly. Error correction resulted in small but important improvements to the final assembly in terms of mapping statistics and core eukaryotic genes representation. The error-corrected de novo assembly resulted in 115,654 contigs after redundancy clustering. 41,667 assembled contigs were homologous to sequences from NCBI’s non-redundant protein and UniProt databases. We assigned Gene Ontology, KEGG Orthology, Pfam protein domain terms and predicted protein-coding sequences to > 36,000 contigs. The final transcriptome dataset generated here provides functional information for 18,319 unique proteins, comprising at least 11,355 expressed genes. Furthermore, we identified 9,739 orthologs to P. miniata proteins, evaluated our annotation pipeline and generated a list of 150 candidate genes for responses to several environmental stressors that may be important for adaptation of A. amurensis in the invasive range. Our study has produced a large set of A. amurensis RNA contigs with functional annotations that can serve as a resource for future comparisons to other echinoderm transcriptomes and gene expression studies. Our data can be used to study the genetic basis of adaptive change and other important evolutionary processes during a successful invasion.

Collaboration


Dive into the Craig D. H. Sherman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E Wapstra

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Dann

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge