Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter I. Macreadie is active.

Publication


Featured researches published by Peter I. Macreadie.


Marine Pollution Bulletin | 2014

Quantifying and modelling the carbon sequestration capacity of seagrass meadows – A critical assessment

Peter I. Macreadie; Mark E. Baird; Stacey M. Trevathan-Tackett; Anthony W. D. Larkum; Peter J. Ralph

Seagrasses are among the planets most effective natural ecosystems for sequestering (capturing and storing) carbon (C); but if degraded, they could leak stored C into the atmosphere and accelerate global warming. Quantifying and modelling the C sequestration capacity is therefore critical for successfully managing seagrass ecosystems to maintain their substantial abatement potential. At present, there is no mechanism to support carbon financing linked to seagrass. For seagrasses to be recognised by the IPCC and the voluntary C market, standard stock assessment methodologies and inventories of seagrass C stocks are required. Developing accurate C budgets for seagrass meadows is indeed complex; we discuss these complexities, and, in addition, we review techniques and methodologies that will aid development of C budgets. We also consider a simple process-based data assimilation model for predicting how seagrasses will respond to future change, accompanied by a practical list of research priorities.


Frontiers in Ecology and the Environment | 2011

Rigs‐to‐reefs: will the deep sea benefit from artificial habitat?

Peter I. Macreadie; Ashley M. Fowler; David J. Booth

As a peak in the global number of offshore oil rigs requiring decommissioning approaches, there is growing pressure for the implementation of a “rigs-to-reefs” program in the deep sea, whereby obsolete rigs are converted into artificial reefs. Such decommissioned rigs could enhance biological productivity, improve ecological connectivity, and facilitate conservation/restoration of deep-sea benthos (eg cold-water corals) by restricting access to fishing trawlers. Preliminary evidence indicates that decommissioned rigs in shallower waters can also help rebuild declining fish stocks. Conversely, potential negative impacts include physical damage to existing benthic habitats within the “drop zone”, undesired changes in marine food webs, facilitation of the spread of invasive species, and release of contaminants as rigs corrode. We discuss key areas for future research and suggest alternatives to offset or minimize negative impacts. Overall, a rigs-to-reefs program may be a valid option for deep-sea benthic co...


PLOS ONE | 2013

Physiological and Morphological Responses of the Temperate Seagrass Zostera muelleri to Multiple Stressors: Investigating the Interactive Effects of Light and Temperature

Paul H. York; Renee K. Gruber; Ross Hill; Peter J. Ralph; David J. Booth; Peter I. Macreadie

Understanding how multiple environmental stressors interact to affect seagrass health (measured as morphological and physiological responses) is important for responding to global declines in seagrass populations. We investigated the interactive effects of temperature stress (24, 27, 30 and 32°C) and shading stress (75, 50, 25 and 0% shade treatments) on the seagrass Zostera muelleri over a 3-month period in laboratory mesocosms. Z. muelleri is widely distributed throughout the temperate and tropical waters of south and east coasts of Australia, and is regarded as a regionally significant species. Optimal growth was observed at 27°C, whereas rapid loss of living shoots and leaf mass occurred at 32°C. We found no difference in the concentration of photosynthetic pigments among temperature treatments by the end of the experiment; however, up-regulation of photoprotective pigments was observed at 30°C. Greater levels of shade resulting in high photochemical efficiencies, while elevated irradiance suppressed effective quantum yield (ΔF/FM’). Chlorophyll fluorescence fast induction curves (FIC) revealed that the J step amplitude was significantly higher in the 0% shade treatment after 8 weeks, indicating a closure of PSII reaction centres, which likely contributed to the decline in ΔF/FM’ and photoinhibition under higher irradiance. Effective quantum yield of PSII (ΔF/FM’) declined steadily in 32°C treatments, indicating thermal damage. Higher temperatures (30°C) resulted in reduced above-ground biomass ratio and smaller leaves, while reduced light led to a reduction in leaf and shoot density, above-ground biomass ratio, shoot biomass and an increase in leaf senescence. Surprisingly, light and temperature had few interactive effects on seagrass health, even though these two stressors had strong effects on seagrass health when tested in isolation. In summary, these results demonstrate that populations of Z. muelleri in south-eastern Australia are sensitive to small chronic temperature increases and light decreases that are predicted under future climate change scenarios.


Conservation Biology | 2009

Fish responses to experimental fragmentation of seagrass habitat.

Peter I. Macreadie; Jeremy S. Hindell; Gregory P. Jenkins; Rod Martin Connolly; Michael J. Keough

Understanding the consequences of habitat fragmentation has come mostly from comparisons of patchy and continuous habitats. Because fragmentation is a process, it is most accurately studied by actively fragmenting large patches into multiple smaller patches. We fragmented artificial seagrass habitats and evaluated the impacts of fragmentation on fish abundance and species richness over time (1 day, 1 week, 1 month). Fish assemblages were compared among 4 treatments: control (single, continuous 9-m(2) patches); fragmented (single, continuous 9-m(2) patches fragmented to 4 discrete 1-m(2) patches); prefragmented/patchy (4 discrete 1-m(2) patches with the same arrangement as fragmented); and disturbance control (fragmented then immediately restored to continuous 9-m(2) patches). Patchy seagrass had lower species richness than actively fragmented seagrass (up to 39% fewer species after 1 week), but species richness in fragmented treatments was similar to controls. Total fish abundance did not vary among treatments and therefore was unaffected by fragmentation, patchiness, or disturbance caused during fragmentation. Patterns in species richness and abundance were consistent 1 day, 1 week, and 1 month after fragmentation. The expected decrease in fish abundance from reduced total seagrass area in fragmented and patchy seagrass appeared to be offset by greater fish density per unit area of seagrass. If fish prefer to live at edges, then the effects of seagrass habitat loss on fish abundance may have been offset by the increase (25%) in seagrass perimeter in fragmented and patchy treatments. Possibly there is some threshold of seagrass patch connectivity below which fish abundances cannot be maintained. The immediate responses of fish to experimental habitat fragmentation provided insights beyond those possible from comparisons of continuous and historically patchy habitat.


Ecology | 2010

Resource distribution influences positive edge effects in a seagrass fish

Peter I. Macreadie; Jeremy S. Hindell; Michael J. Keough; Gregory P. Jenkins; Rod Martin Connolly

According to conceptual models, the distribution of resources plays a critical role in determining how organisms distribute themselves near habitat edges. These models are frequently used to achieve a mechanistic understanding of edge effects, but because they are based predominantly on correlative studies, there is need for a demonstration of causality, which is best done through experimentation. Using artificial seagrass habitat as an experimental system, we determined a likely mechanism underpinning edge effects in a seagrass fish. To test for edge effects, we measured fish abundance at edges (0-0.5 m) and interiors (0.5-1 m) of two patch configurations: continuous (single, continuous 9-m2 patches) and patchy (four discrete 1-m2 patches within a 9-m2 area). In continuous configurations, pipefish (Stigmatopora argus) were three times more abundant at edges than interiors (positive edge effect), but in patchy configurations there was no difference. The lack of edge effect in patchy configurations might be because patchy seagrass consisted entirely of edge habitat. We then used two approaches to test whether observed edge effects in continuous configurations were caused by increased availability of food at edges. First, we estimated the abundance of the major prey of pipefish, small crustaceans, across continuous seagrass configurations. Crustacean abundances were highest at seagrass edges, where they were 16% greater than in patch interiors. Second, we supplemented interiors of continuous treatment patches with live crustaceans, while control patches were supplemented with seawater. After five hours of supplementation, numbers of pipefish were similar between edges and interiors of treatment patches, while the strong edge effects were maintained in controls. This indicated that fish were moving from patch edges to interiors in response to food supplementation. These approaches strongly suggest that a numerically dominant fish species is more abundant at seagrass edges due to greater food availability, and provide experimental support for the resource distribution model as an explanation for edge effects.


PLOS ONE | 2013

Loss of 'blue carbon' from coastal salt marshes following habitat disturbance.

Peter I. Macreadie; A. Randall Hughes; David L. Kimbro

Increased recognition of the global importance of salt marshes as ‘blue carbon’ (C) sinks has led to concern that salt marshes could release large amounts of stored C into the atmosphere (as CO2) if they continue undergoing disturbance, thereby accelerating climate change. Empirical evidence of C release following salt marsh habitat loss due to disturbance is rare, yet such information is essential for inclusion of salt marshes in greenhouse gas emission reduction and offset schemes. Here we investigated the stability of salt marsh ( Spartina alterniflora ) sediment C levels following seagrass ( Thallasiatestudinum ) wrack accumulation; a form of disturbance common throughout the world that removes large areas of plant biomass in salt marshes. At our study site (St Joseph Bay, Florida, USA), we recorded 296 patches (7.5 ± 2.3 m2 mean area ± SE) of vegetation loss (aged 3-12 months) in a salt marsh meadow the size of a soccer field (7 275 m2). Within these disturbed patches, levels of organic C in the subsurface zone (1-5 cm depth) were ~30% lower than the surrounding undisturbed meadow. Subsequent analyses showed that the decline in subsurface C levels in disturbed patches was due to loss of below-ground plant (salt marsh) biomass, which otherwise forms the main component of the long-term ‘refractory’ C stock. We conclude that disturbance to salt marsh habitat due to wrack accumulation can cause significant release of below-ground C; which could shift salt marshes from C sinks to C sources, depending on the intensity and scale of disturbance. This mechanism of C release is likely to increase in the future due to sea level rise; which could increase wrack production due to increasing storminess, and will facilitate delivery of wrack into salt marsh zones due to higher and more frequent inundation.


Proceedings of the Royal Society B: Biological Sciences | 2015

Losses and recovery of organic carbon from a seagrass ecosystem following disturbance

Peter I. Macreadie; Stacey M. Trevathan-Tackett; Charles G. Skilbeck; Jonathan Sanderman; Nathalie J.A. Curlevski; Geraldine Jacobsen; Justin R. Seymour

Seagrasses are among the Earths most efficient and long-term carbon sinks, but coastal development threatens this capacity. We report new evidence that disturbance to seagrass ecosystems causes release of ancient carbon. In a seagrass ecosystem that had been disturbed 50 years ago, we found that soil carbon stocks declined by 72%, which, according to radiocarbon dating, had taken hundreds to thousands of years to accumulate. Disturbed soils harboured different benthic bacterial communities (according to 16S rRNA sequence analysis), with higher proportions of aerobic heterotrophs compared with undisturbed. Fingerprinting of the carbon (via stable isotopes) suggested that the contribution of autochthonous carbon (carbon produced through plant primary production) to the soil carbon pool was less in disturbed areas compared with seagrass and recovered areas. Seagrass areas that had recovered from disturbance had slightly lower (35%) carbon levels than undisturbed, but more than twice as much as the disturbed areas, which is encouraging for restoration efforts. Slow rates of seagrass recovery imply the need to transplant seagrass, rather than waiting for recovery via natural processes. This study empirically demonstrates that disturbance to seagrass ecosystems can cause release of ancient carbon, with potentially major global warming consequences.


Ecology and Evolution | 2014

Resilience of Zostera muelleri seagrass to small-scale disturbances: the relative importance of asexual versus sexual recovery.

Peter I. Macreadie; Paul H. York; Craig D. H. Sherman

Resilience is the ability of an ecosystem to recover from disturbance without loss of essential function. Seagrass ecosystems are key marine and estuarine habitats that are under threat from a variety of natural and anthropogenic disturbances. The ability of these ecosystems to recovery from disturbance will to a large extent depend on the internsity and scale of the disturbance, and the relative importance of sexual versus asexual reproduction within populations. Here, we investigated the resilience of Zostera muelleri seagrass (Syn. Zostera capricorni) to small-scale disturbances at four locations in Lake Macquarie – Australias largest coastal lake – and monitored recovery over a 65-week period. Resilience of Z. muelleri varied significantly with disturbance intensity; Z. muelleri recovered rapidly (within 2 weeks) from low-intensity disturbance (shoot loss), and rates of recovery appeared related to initial shoot length. Recovery via rhizome encroachment (asexual regeneration) from high-intensity disturbance (loss of entire plant) varied among locations, ranging from 18-35 weeks, whereas the ability to recover was apparently lost (at least within the time frame of this study) when recovery depended on sexual regeneration, suggesting that seeds do not provide a mechanism of recovery against intense small-scale disturbances. The lack of sexual recruits into disturbed sites is surprising as our initial surveys of genotypic diversity (using nine polymorphic microsatellite loci) at these location indicate that populations are maintained by a mix of sexual and asexual reproduction (genotypic diversity [R] varied from 0.24 to 0.44), and populations consisted of a mosaic of genotypes with on average 3.6 unique multilocus genotypes per 300 mm diameter plot. We therefore conclude that Z. muelleri populations within Lake Macquarie rely on clonal growth to recover from small-scale disturbances and that ongoing sexual recruitment by seeds into established seagrass beds (as opposed to bare areas arising from disturbance) must be the mechanism responsible for maintaining the observed mixed genetic composition of Z. muelleri seagrass meadows.


Marine Pollution Bulletin | 2015

Variability of sedimentary organic carbon in patchy seagrass landscapes

Aurora M. Ricart; Paul H. York; Michael Rasheed; Marta Pérez; Javier Romero; Catherine Bryant; Peter I. Macreadie

Seagrass ecosystems, considered among the most efficient carbon sinks worldwide, encompass a wide variety of spatial configurations in the coastal landscape. Here we evaluated the influence of the spatial configuration of seagrass meadows at small scales (metres) on carbon storage in seagrass sediments. We intensively sampled carbon stocks and other geochemical properties (δ(13)C, particle size, depositional fluxes) across seagrass-sand edges in a Zostera muelleri patchy seagrass landscape. Carbon stocks were significantly higher (ca. 20%) inside seagrass patches than at seagrass-sand edges and bare sediments. Deposition was similar among all positions and most of the carbon was from allochthonous sources. Patch level attributes (e.g. edge distance) represent important determinants of the spatial heterogeneity of carbon stocks within seagrass ecosystems. Our findings indicate that carbon stocks of seagrass areas have likely been overestimated by not considering the influence of meadow landscapes, and have important relevance for the design of seagrass carbon stock assessments.


FEMS Microbiology Ecology | 2017

Sediment anoxia limits microbial-driven seagrass carbon remineralization under warming conditions

Stacey M. Trevathan-Tackett; Justin R. Seymour; Daniel A. Nielsen; Peter I. Macreadie; Thomas C. Jeffries; Jonathan Sanderman; Jeff Baldock; Johanna M. Howes; Andy Steven; Peter J. Ralph

ABSTRACT Seagrass ecosystems are significant carbon sinks, and their resident microbial communities ultimately determine the quantity and quality of carbon sequestered. However, environmental perturbations have been predicted to affect microbial‐driven seagrass decomposition and subsequent carbon sequestration. Utilizing techniques including 16S‐rDNA sequencing, solid‐state NMR and microsensor profiling, we tested the hypothesis that elevated seawater temperatures and eutrophication enhance the microbial decomposition of seagrass leaf detritus and rhizome/root tissues. Nutrient additions had a negligible effect on seagrass decomposition, indicating an absence of nutrient limitation. Elevated temperatures caused a 19% higher biomass loss for aerobically decaying leaf detritus, coinciding with changes in bacterial community structure and enhanced lignocellulose degradation. Although, community shifts and lignocellulose degradation were also observed for rhizome/root decomposition, anaerobic decay was unaffected by temperature. These observations suggest that oxygen availability constrains the stimulatory effects of temperature increases on bacterial carbon remineralization, possibly through differential temperature effects on bacterial functional groups, including putative aerobic heterotrophs (e.g. Erythrobacteraceae, Hyphomicrobiaceae) and sulfate reducers (e.g. Desulfobacteraceae). Consequently, under elevated seawater temperatures, carbon accumulation rates may diminish due to higher remineralization rates at the sediment surface. Nonetheless, the anoxic conditions ubiquitous to seagrass sediments can provide a degree of carbon protection under warming seawater temperatures. &NA; Graphical Abstract Figure. While elevated seawater temperatures may diminish carbon accumulation at the sediment surface, the anoxic conditions in coastal sediments can provide carbon protection under warming temperatures, thus promoting carbon storage.

Collaboration


Dive into the Peter I. Macreadie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos M. Duarte

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge