Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Justin A. McDonough is active.

Publication


Featured researches published by Justin A. McDonough.


Nature | 2011

Modulation of Rab GTPase function by a protein phosphocholine transferase

Shaeri Mukherjee; Xiaoyun Liu; Kohei Arasaki; Justin A. McDonough; Jorge E. Galán; Craig R. Roy

The intracellular pathogen Legionella pneumophila modulates the activity of host GTPases to direct the transport and assembly of the membrane-bound compartment in which it resides. In vitro studies have indicated that the Legionella protein DrrA post-translationally modifies the GTPase Rab1 by a process called AMPylation. Here we used mass spectrometry to investigate post-translational modifications to Rab1 that occur during infection of host cells by Legionella. Consistent with in vitro studies, DrrA-mediated AMPylation of a conserved tyrosine residue in the switch II region of Rab1 was detected during infection. In addition, a modification to an adjacent serine residue in Rab1 was discovered, which was independent of DrrA. The Legionella effector protein AnkX was required for this modification. Biochemical studies determined that AnkX directly mediates the covalent attachment of a phosphocholine moiety to Rab1. This phosphocholine transferase activity used CDP-choline as a substrate and required a conserved histidine residue located in the FIC domain of the AnkX protein. During infection, AnkX modified both Rab1 and Rab35, which explains how this protein modulates membrane transport through both the endocytic and exocytic pathways of the host cell. Thus, phosphocholination of Rab GTPases represents a mechanism by which bacterial FIC-domain-containing proteins can alter host-cell functions.


Mbio | 2013

Host Pathways Important for Coxiella burnetii Infection Revealed by Genome-Wide RNA Interference Screening

Justin A. McDonough; Hayley J. Newton; Scott Klum; Rachel Swiss; Hervé Agaisse; Craig R. Roy

ABSTRACT Coxiella burnetii is an intracellular pathogen that replicates within a lysosome-like vacuole. A Dot/Icm type IVB secretion system is used by C. burnetii to translocate effector proteins into the host cytosol that likely modulate host factor function. To identify host determinants required for C. burnetii intracellular growth, a genome-wide screen was performed using gene silencing by small interfering RNA (siRNA). Replication of C. burnetii was measured by immunofluorescence microscopy in siRNA-transfected HeLa cells. Newly identified host factors included components of the retromer complex, which mediates cargo cycling between the endocytic pathway and the Golgi apparatus. Reducing the levels of the retromer cargo-adapter VPS26-VPS29-VPS35 complex or retromer-associated sorting nexins abrogated C. burnetii replication. Several genes, when silenced, resulted in enlarged vacuoles or an increased number of vacuoles within C. burnetii-infected cells. Silencing of the STX17 gene encoding syntaxin-17 resulted in a striking defect in homotypic fusion of vacuoles containing C. burnetii, suggesting a role for syntaxin-17 in regulating this process. Lastly, silencing host genes needed for C. burnetii replication correlated with defects in the translocation of Dot/Icm effectors, whereas, silencing of genes that affected vacuole morphology, but did not impact replication, did not affect Dot/Icm translocation. These data demonstrate that C. burnetii vacuole maturation is important for creating a niche that permits Dot/Icm function. Thus, genome-wide screening has revealed host determinants involved in sequential events that occur during C. burnetii infection as defined by bacterial uptake, vacuole transport and acidification, activation of the Dot/Icm system, homotypic fusion of vacuoles, and intracellular replication. IMPORTANCE Q fever in humans is caused by the bacterium Coxiella burnetii. Infection with C. burnetii is marked by its unique ability to replicate within a large vacuolar compartment inside cells that resembles the harsh, acidic environment of a lysosome. Central to its pathogenesis is the delivery of bacterial effector proteins into the host cell cytosol by a Dot/Icm type IVB secretion system. These proteins can interact with and manipulate host factors, thereby leading to creation and maintenance of the vacuole that the bacteria grow within. Using high-throughput genome-wide screening in human cells, we identified host factors important for several facets of C. burnetii infection, including vacuole transport and membrane fusion events that promote vacuole expansion. In addition, we show that maturation of the C. burnetii vacuole is necessary for creating an environment permissive for the Dot/Icm delivery of bacterial effector proteins into the host cytosol. Q fever in humans is caused by the bacterium Coxiella burnetii. Infection with C. burnetii is marked by its unique ability to replicate within a large vacuolar compartment inside cells that resembles the harsh, acidic environment of a lysosome. Central to its pathogenesis is the delivery of bacterial effector proteins into the host cell cytosol by a Dot/Icm type IVB secretion system. These proteins can interact with and manipulate host factors, thereby leading to creation and maintenance of the vacuole that the bacteria grow within. Using high-throughput genome-wide screening in human cells, we identified host factors important for several facets of C. burnetii infection, including vacuole transport and membrane fusion events that promote vacuole expansion. In addition, we show that maturation of the C. burnetii vacuole is necessary for creating an environment permissive for the Dot/Icm delivery of bacterial effector proteins into the host cytosol.


PLOS Pathogens | 2014

A screen of Coxiella burnetii mutants reveals important roles for Dot/Icm effectors and host autophagy in vacuole biogenesis.

Hayley J. Newton; Lara J. Kohler; Justin A. McDonough; Morayma Temoche-Diaz; Emerson Crabill; Elizabeth L. Hartland; Craig R. Roy

Coxiella burnetii is an intracellular pathogen that replicates in a lysosome-derived vacuole. The molecular mechanisms used by this bacterium to create a pathogen-occupied vacuole remain largely unknown. Here, we conducted a visual screen on an arrayed library of C. burnetii NMII transposon insertion mutants to identify genes required for biogenesis of a mature Coxiella-containing vacuole (CCV). Mutants defective in Dot/Icm secretion system function or the PmrAB regulatory system were incapable of intracellular replication. Several mutants with intracellular growth defects were found to have insertions in genes encoding effector proteins translocated into host cells by the Dot/Icm system. These included mutants deficient in the effector proteins Cig57, CoxCC8 and Cbu1754. Mutants that had transposon insertions in genes important in central metabolism or encoding tRNA modification enzymes were identified based on the appearance filamentous bacteria intracellularly. Lastly, mutants that displayed a multi-vacuolar phenotype were identified. All of these mutants had a transposon insertion in the gene encoding the effector protein Cig2. Whereas vacuoles containing wild type C. burnetii displayed robust accumulation of the autophagosome protein LC3, the vacuoles formed by the cig2 mutant did not contain detectible amounts of LC3. Furthermore, interfering with host autophagy during infection by wild type C. burnetii resulted in a multi-vacuolar phenotype similar to that displayed by the cig2 mutant. Thus, a functional Cig2 protein is important for interactions between the CCV and host autophagosomes and this drives a process that enhances the fusogenic properties of this pathogen-occupied organelle.


PLOS ONE | 2013

Effector protein translocation by the Coxiella burnetii Dot/Icm type IV secretion system requires endocytic maturation of the pathogen-occupied vacuole.

Hayley J. Newton; Justin A. McDonough; Craig R. Roy

The human pathogen Coxiella burnetii encodes a type IV secretion system called Dot/Icm that is essential for intracellular replication. The Dot/Icm system delivers bacterial effector proteins into the host cytosol during infection. The effector proteins delivered by C. burnetii are predicted to have important functions during infection, but when these proteins are needed during infection has not been clearly defined. Here, we use a reporter system consisting of fusion proteins that have a β-lactamase enzyme (BlaM) fused to C. burnetii effector proteins to study protein translocation by the Dot/Icm system. Translocation of BlaM fused to the effector proteins CBU0077, CBU1823 and CBU1524 was not detected until 8-hours after infection of HeLa cells, which are permissive for C. burnetii replication. Translocation of these effector fusion proteins by the Dot/Icm system required acidification of the Coxiella-containing vacuole. Silencing of the host genes encoding the membrane transport regulators Rab5 or Rab7 interfered with effector translocation, which indicates that effectors are not translocated until bacteria traffic to a late endocytic compartment in the host cell. Similar requirements for effector translocation were discerned in bone marrow macrophages derived from C57BL/6 mice, which are primary cells that restrict the intracellular replication of C. burnetii. In addition to requiring endocytic maturation of the vacuole for Dot/Icm-mediated translocation of effectors, bacterial transcription was required for this process. Thus, translocation of effector proteins by the C. burnetii Dot/Icm system occurs after acidification of the CCV and maturation of this specialized organelle to a late endocytic compartment. This indicates that creation of the specialized vacuole in which C. burnetii replicates represents a two-stage process mediated initially by host factors that regulate endocytic maturation and then by bacterial effectors delivered into host cells after bacteria establish residency in a lysosome-derived organelle.


Cellular Microbiology | 2010

The Anaplasma phagocytophilum-occupied vacuole selectively recruits Rab-GTPases that are predominantly associated with recycling endosomes.

Bernice Huang; Andree Hubber; Justin A. McDonough; Craig R. Roy; Marci A. Scidmore; Jason A. Carlyon

Anaplasma phagocytophilum is an obligate intracellular bacterium that infects neutrophils to reside within a host cell‐derived vacuole. The A. phagocytophilum‐occupied vacuole (ApV) fails to mature along the endocytic pathway and is non‐fusogenic with lysosomes. Rab GTPases regulate membrane traffic. To better understand how the bacterium modulates the ApVs selective fusogencity, we examined the intracellular localization of 20 green fluorescent protein (GFP) or red fluorescent protein (RFP)‐tagged Rab GTPases in A. phagocytophilum‐infected HL‐60 cells. GFP‐Rab4A, GFP‐Rab10, GFP‐Rab11A, GFP‐Rab14, RFP‐Rab22A and GFP‐Rab35, which regulate endocytic recycling, and GFP‐Rab1, which mediates endoplasmic reticulum to Golgi apparatus trafficking, localize to the ApV. Fluorescently tagged Rabs are recruited to the ApV upon its formation and remain associated throughout infection. Endogenous Rab14 localizes to the ApV. Tetracycline treatment concomitantly promotes loss of recycling endosome‐associated GFP‐Rabs and acquisition of GFP‐Rab5, GFP‐Rab7, and the lysosomal marker, LAMP‐1. Wild‐type and GTPase‐ deficient versions, but not GDP‐restricted versions of GFP‐Rab1, GFP‐Rab4A and GFP‐Rab11A, localize to the ApV. Strikingly, GFP‐Rab10 recruitment to the ApV is guanine nucleotide‐independent. These data establish that A. phagocytophilum selectively recruits Rab GTPases that are primarily associated with recycling endosomes to facilitate its intracellular survival and implicate bacterial proteins in regulating Rab10 membrane cycling on the ApV.


Fungal Genetics and Biology | 2002

Involvement of Candida albicans NADH dehydrogenase complex I in filamentation

Justin A. McDonough; Vasker Bhattacherjee; Tania Sadlon; Margaret K. Hostetter

The gene encoding the 51-kDa subunit of nicotinamide adenine dinucleotide (NADH) dehydrogenase complex I, a principal component of the mitochondrial electron transport chain, was cloned in Candida tropicalis. The homolog in C. albicans, CaNDH51, was identified, and each allele was successively disrupted by PCR-mediated gene disruption. Wild type, heterozygote, reintegrant, and homozygous null mutants grew as blastoconidia in rich medium containing 3% glucose, but the homozygous null mutant failed to grow in ethanol or acetate. When glucose concentration was varied from 1 mM (0.018%) to 200 mM (3.6%) in a basal salts medium, all strains grew equally well at all glucose concentrations; the wild-type strain, the heterozygote, and the reintegrant exhibited abundant germ tubes, pseudohyphae, and hyphae. In contrast, the ndh51/ndh51 strain failed to display any type of filamentous growth, even in glucose concentrations as low as 1 mM. These results suggest a previously unexplored relationship between mitochondrial electron transport and morphogenesis.


Journal of Biological Chemistry | 2009

The Accessory SecA2 System of Mycobacteria Requires ATP Binding and the Canonical SecA1

Nathan W. Rigel; Henry S. Gibbons; Jessica R. McCann; Justin A. McDonough; Sherry Kurtz; Miriam Braunstein

In bacteria, the majority of exported proteins are transported by the general Sec pathway from their site of synthesis in the cytoplasm across the cytoplasmic membrane. The essential SecA ATPase powers this Sec-mediated export. Mycobacteria possess two nonredundant SecA homologs: SecA1 and SecA2. In pathogenic Mycobacterium tuberculosis and the nonpathogenic model mycobacterium Mycobacterium smegmatis, SecA1 is essential for protein export and is the “housekeeping” SecA, whereas SecA2 is an accessory SecA that exports a specific subset of proteins. In M. tuberculosis the accessory SecA2 pathway plays a role in virulence. In this study, we uncovered basic properties of the mycobacterial SecA2 protein and its pathway for exporting select proteins. By constructing secA2 mutant alleles that encode proteins defective in ATP binding, we showed that ATP binding is required for SecA2 function. SecA2 mutant proteins unable to bind ATP were nonfunctional and dominant negative. By evaluating the subcellular distribution of each SecA, SecA1 was shown to be equally divided between cytosolic and cell envelope fractions, whereas SecA2 was predominantly localized to the cytosol. Finally, we showed that the canonical SecA1 has a role in the process of SecA2-dependent export. The accessory SecA2 export system is important to the physiology and virulence of mycobacteria. These studies help establish the mechanism of this new type of specialized protein export pathway.


Biochemical Society Transactions | 2012

The role of Rab GTPases in the transport of vacuoles containing Legionella pneumophila and Coxiella burnetii

Camille Hardiman; Justin A. McDonough; Hayley J. Newton; Craig R. Roy

Intracellular pathogens survive in eukaryotic cells by evading a variety of host defences. To avoid degradation through the endocytic pathway, intracellular bacteria must adapt their phagosomes into protective compartments that promote bacterial replication. Legionella pneumophila and Coxiella burnetii are Gram-negative intracellular pathogens that remodel their phagosomes by co-opting components of the host cell, including Rab GTPases. L. pneumophila and C. burnetii are related phylogenetically and share an analogous type IV secretion system for delivering bacterial effectors into the host cell. Some of these effectors mimic eukaryotic biochemical activities to recruit and modify Rabs at the vacuole. In the present review, we cover how these bacterial species, which utilize divergent strategies to establish replicative vacuoles, use translocated proteins to manipulate host Rabs, as well as exploring which Rabs are implicated in vacuolar biogenesis in these two organisms.


Journal of Bacteriology | 2011

Genome-Wide Identification of Mycobacterium tuberculosis Exported Proteins with Roles in Intracellular Growth

Jessica R. McCann; Justin A. McDonough; Jonathan Tabb Sullivan; Meghan E. Feltcher; Miriam Braunstein

The exported proteins of Mycobacterium tuberculosis that are localized at the bacterial cell surface or secreted into the environment are ideally situated to interact with host factors and to function in virulence. In this study, we constructed a novel β-lactamase reporter transposon and used it directly in M. tuberculosis for genome-wide identification of exported proteins. From 177 β-lactam-resistant transposon mutants, we identified 111 different exported proteins. The majority of these proteins have no known function, and for nearly half of the proteins, our demonstration that they are exported when fused to a β-lactamase reporter is the first experimental proof of their extracytoplasmic localization. The transposon mutants in our banked library were of further value as a collection of mutants lacking individual exported proteins. By individually testing each of 111 mutants for growth in macrophages, six attenuated mutants with insertions in mce1A, mce1B, mce2F, rv0199, ctaC, and lppX were identified. Given that much of the M. tuberculosis genome encodes proteins of unknown function, our library of mapped transposon mutants is a valuable resource for efforts in functional genomics. This work also demonstrates the power of a β-lactamase reporter transposon that could be applied similarly to other bacterial pathogens.


Advances in Experimental Medicine and Biology | 2012

Coxiella burnetii secretion systems.

Justin A. McDonough; Hayley J. Newton; Craig R. Roy

The ability of bacteria to transport proteins across their membranes is integral for interaction with their environment. Distinct families of secretion systems mediate bacterial protein secretion. The human pathogen, Coxiella burnetii encodes components of the Sec-dependent secretion pathway, an export system used for type IV pilus assembly, and a complete type IV secretion system. The type IVB secretion system in C. burnetii is functionally analogous to the Legionella pneumophila Dot/Icm secretion system. Both L. pneumophila and C. burnetii require the Dot/Icm apparatus for intracellular replication. The Dot/Icm secretion system facilitates the translocation of many bacterial effector proteins across the bacterial and vacuole membranes to enter the host cytoplasm where the effector proteins mediate their specific activities to manipulate a variety of host cell processes. Several studies have identified cohorts of C. burnetii Dot/Icm effector proteins that are predicted to be involved in modulation of host cell functions. This chapter focuses specifically on these secretion systems and the role they may play during C. burnetii replication in eukaryotic host cells.

Collaboration


Dive into the Justin A. McDonough's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miriam Braunstein

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jessica R. McCann

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Emerson Crabill

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathan W. Rigel

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernice Huang

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge