Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig W. Menges is active.

Publication


Featured researches published by Craig W. Menges.


Cancer Research | 2006

Human Papillomavirus Type 16 E7 Up-regulates AKT Activity through the Retinoblastoma Protein

Craig W. Menges; Laurel A. Baglia; Randi Lapoint; Dennis J. McCance

Human papillomaviruses (HPV) are small DNA tumor viruses causally associated with cervical cancer. The early gene product E7 from high-risk HPV is considered the major transforming protein expressed by the virus. Although many functions have been described for E7 in disrupting normal cellular processes, we describe in this study a new cellular target in primary human foreskin keratinocytes (HFK), the serine/threonine kinase AKT. Expression of HPV type 16 E7 in HFK caused inhibition of differentiation, hyperproliferation, and up-regulation of AKT activity in organotypic raft cultures. The ability of E7 to up-regulate AKT activity is dependent on its ability to bind to and inactivate the retinoblastoma (Rb) gene product family of proteins. Furthermore, we show that knocking down Rb alone, with short hairpin RNAs, was sufficient to up-regulate AKT activity in differentiated keratinocytes. Up-regulation of AKT activity and loss of Rb was also observed in HPV-positive cervical high-grade squamous intraepithelial lesions when compared with normal cervical tissue. Together, these data provide evidence linking inactivation of Rb by E7 in the up-regulation of AKT activity during cervical cancer progression.


Science Translational Medicine | 2014

Merlin Deficiency Predicts FAK Inhibitor Sensitivity: A Synthetic Lethal Relationship

Irina M. Shapiro; Vihren N. Kolev; Christian M. Vidal; Yuwaraj Kadariya; Jennifer E. Ring; Quentin G. Wright; David T. Weaver; Craig W. Menges; Mahesh Padval; Andrea I. McClatchey; Qunli Xu; Joseph R. Testa; Jonathan A. Pachter

FAK inhibitor treatment is effective against Merlin-negative mesothelioma tumors and preferentially targets cancer stem cells. Therapeutic Magic Without Merlin Mesothelioma is an aggressive cancer of the pleura (lung lining), which is very difficult to treat and often recurs after therapy. Now, Shapiro and coauthors have discovered that mesotheliomas and other tumors that are low in a tumor suppressor called Merlin are particularly sensitive to treatment with a new drug called VS-4718, which blocks the activity of the enzyme focal adhesion kinase. Moreover, in preclinical testing, VS-4718 was particularly effective at killing cancer stem cells, which are the hardest to eradicate with conventional chemotherapy and can give rise to recurrent tumors. These results suggest that VS-4718 or a similar drug may make a valuable addition to the standard treatment regimen for mesothelioma and may reduce the risk of relapse in this cancer. The goal of targeted therapy is to match a selective drug with a genetic lesion that predicts for drug sensitivity. In a diverse panel of cancer cell lines, we found that the cells most sensitive to focal adhesion kinase (FAK) inhibition lack expression of the neurofibromatosis type 2 (NF2) tumor suppressor gene product, Merlin. Merlin expression is often lost in malignant pleural mesothelioma (MPM), an asbestos-induced aggressive cancer with limited treatment options. Our data demonstrate that low Merlin expression predicts for increased sensitivity of MPM cells to a FAK inhibitor, VS-4718, in vitro and in tumor xenograft models. Disruption of MPM cell-cell or cell–extracellular matrix (ECM) contacts with blocking antibodies suggests that weak cell-cell adhesions in Merlin-negative MPM cells underlie their greater dependence on cell-ECM–induced FAK signaling. This provides one explanation of why Merlin-negative cells are vulnerable to FAK inhibitor treatment. Furthermore, we validated aldehyde dehydrogenase as a marker of cancer stem cells (CSCs) in MPM, a cell population thought to mediate tumor relapse after chemotherapy. Whereas pemetrexed and cisplatin, standard-of-care agents for MPM, enrich for CSCs, FAK inhibitor treatment preferentially eliminates these cells. These preclinical results provide the rationale for a clinical trial in MPM patients using a FAK inhibitor as a single agent after first-line chemotherapy. With this design, the FAK inhibitor could potentially induce a more durable clinical response through reduction of CSCs along with a strong antitumor effect. Furthermore, our data suggest that patients with Merlin-negative tumors may especially benefit from FAK inhibitor treatment.


Journal of Biological Chemistry | 2006

AKT1 Provides an Essential Survival Signal Required for Differentiation and Stratification of Primary Human Keratinocytes

Barry R. Thrash; Craig W. Menges; Robert H. Pierce; Dennis J. McCance

Keratinocyte differentiation and stratification are complex processes involving multiple signaling pathways, which convert a basal proliferative cell into an inviable rigid squame. Loss of attachment to the basement membrane triggers keratinocyte differentiation, while in other epithelial cells, detachment from the extracellular matrix leads to rapid programmed cell death or anoikis. The potential role of AKT in providing a survival signal necessary for stratification and differentiation of primary human keratinocytes was investigated. AKT activity increased during keratinocyte differentiation and was attributed to the specific activation of AKT1 and AKT2. Targeted reduction of AKT1 expression, but not AKT2, by RNA interference resulted in an abnormal epidermis in organotypic skin cultures with a thin parabasal region and a pronounced but disorganized cornified layer. This abnormal stratification was due to significant cell death in the suprabasal layers and was alleviated by caspase inhibition. Normal expression patterns of both early and late markers of keratinocyte differentiation were also disrupted, producing a poorly developed stratum corneum.


Cancer Research | 2014

Germline mutation of Bap1 accelerates development of asbestos-induced malignant mesothelioma

Jinfei Xu; Yuwaraj Kadariya; Mitchell Cheung; Jianming Pei; Jacqueline Talarchek; Eleonora Sementino; Yinfei Tan; Craig W. Menges; Kathy Q. Cai; Samuel Litwin; Hongzhuang Peng; Jayashree Karar; Frank J. Rauscher; Joseph R. Testa

Malignant mesotheliomas are highly aggressive tumors usually caused by exposure to asbestos. Germline-inactivating mutations of BAP1 predispose to mesothelioma and certain other cancers. However, why mesothelioma is the predominate malignancy in some BAP1 families and not others, and whether exposure to asbestos is required for development of mesothelioma in BAP1 mutation carriers are not known. To address these questions experimentally, we generated a Bap1(+/-) knockout mouse model to assess its susceptibility to mesothelioma upon chronic exposure to asbestos. Bap1(+/-) mice exhibited a significantly higher incidence of asbestos-induced mesothelioma than wild-type (WT) littermates (73% vs. 32%, respectively). Furthermore, mesotheliomas arose at an accelerated rate in Bap1(+/-) mice than in WT animals (median survival, 43 weeks vs. 55 weeks after initial exposure, respectively) and showed increased invasiveness and proliferation. No spontaneous mesotheliomas were seen in unexposed Bap1(+/-) mice followed for up to 87 weeks of age. Mesothelioma cells from Bap1(+/-) mice showed biallelic inactivation of Bap1, consistent with its proposed role as a recessive cancer susceptibility gene. Unlike in WT mice, mesotheliomas from Bap1(+/-) mice did not require homozygous loss of Cdkn2a. However, normal mesothelial cells and mesothelioma cells from Bap1(+/-) mice showed downregulation of Rb through a p16(Ink4a)-independent mechanism, suggesting that predisposition of Bap1(+/-) mice to mesothelioma may be facilitated, in part, by cooperation between Bap1 and Rb. Drawing parallels to human disease, these unbiased genetic findings indicate that BAP1 mutation carriers are predisposed to the tumorigenic effects of asbestos and suggest that high penetrance of mesothelioma requires such environmental exposure.


Oncogene | 2008

Constitutive activation of the Raf-MAPK pathway causes negative feedback inhibition of Ras-PI3K-AKT and cellular arrest through the EphA2 receptor.

Craig W. Menges; Dennis J. McCance

The Raf–mitogen-activated protein kinase (MAPK) and phosphatidylinositide 3-kinase (PI3K)–AKT pathways are two downstream effectors of the small GTPase Ras. Although both pathways are positively regulated by Ras, the Raf–MAPK and PI3K–AKT pathways have been shown to control opposing functions within the cell, suggesting a need for cross-talk regulation. The PI3K–AKT pathway can inhibit the Raf–MAPK pathway directly during processes such as muscle differentiation. Here we describe the ability of the Raf–MAPK pathway to negatively regulate the PI3K–AKT pathway during cellular arrest. Constitutive activation of Raf or methyl ethyl ketone 1 (MEK1) leads to inhibition of AKT and cellular arrest. Furthermore, we show that activation of Raf–MEK1 signaling causes negative feedback inhibition of Ras through the ephrin receptor EphA2. EphA2-mediated negative feedback inhibition is required for Raf-induced AKT inhibition and cell cycle arrest, therefore establishing the inhibition of the Ras–PI3K–AKT pathway as a necessary event for the Raf–MEK1-regulated cellular arrest.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Activated TNF-α/NF-κB signaling via down-regulation of Fas-associated factor 1 in asbestos-induced mesotheliomas from Arf knockout mice

Deborah A. Altomare; Craig W. Menges; Jianming Pei; Lili Zhang; Kristine L. Skele-Stump; Michele Carbone; Agnes B. Kane; Joseph R. Testa

The human CDKN2A locus encodes 2 distinct proteins, p16(INK4A) and p14(ARF) [mouse p19(Arf)], designated INK4A (inhibitor of cyclin dependent kinase 4) and ARF (alternative reading frame) here, that are translated from alternatively spliced mRNAs. Human ARF is implicated as a tumor suppressor gene, mainly in association with the simultaneous deletion of INK4A. However, questions remain as to whether loss of ARF alone is sufficient to drive tumorigenesis. Here, we report that mice deficient for Arf are susceptible to accelerated asbestos-induced malignant mesothelioma (MM). MMs arising in Arf (+/−) mice consistently exhibit biallelic inactivation of Arf, but, unexpectedly, do not acquire additional recurrent genetic alterations that we previously identified in asbestos-induced MMs arising in Nf2 (+/−) mice. Array CGH analysis was used to detect a recurrent deletion at chromosome 4C6 in MMs from Arf (+/−) mice. A candidate gene in this region, Faf1 (FAS-associated factor 1), was further explored, because it encodes a protein implicated in tumor cell survival and in the pathogenesis of some human tumor types. We confirmed hemizygous loss of Faf1 and down-regulation of Faf1 protein in a series of MMs from Arf (+/−) mice, and we then showed that Faf1 regulates TNF-α-mediated NF-κB signaling, a pathway previously implicated in asbestos-induced oncogenesis of human mesothelial cells. Collectively, these data indicate that Arf inactivation has a significant role in driving MM pathogenesis, and implicate Faf1 as a key component in the TNF-α/NF-κB signaling node that has now been independently implicated in asbestos-induced oncogenesis.


Cell Cycle | 2009

FAS-Associated Factor 1 (FAF1): diverse functions and implications for oncogenesis

Craig W. Menges; Deborah A. Altomare; Joseph R. Testa

FAS-associated factor 1, FAF1, is an evolutionarily conserved protein that has several protein interaction domains. Although FAF1 was initially identified as a member of the FAS death-inducing signaling complex, subsequent work has revealed that FAF1 functions in diverse biological processes. FAF1 has been shown to play an important role in normal development and neuronal cell survival, whereas FAF1 down regulation may contribute to multiple aspects of tumorigenesis. In particular, there is compelling evidence implicating FAF1 as a tumor suppressor involved in the regulation of apoptosis and NF-κB activity, as well as in ubiquitination and proteasomal degradation. Here, we highlight FAF1’s role in NF-κB signaling and postulate that this pathway has critical connotations for the pathogenesis and treatment of human cancers.


PLOS ONE | 2011

Losses of Both Products of the Cdkn2a/Arf Locus Contribute to Asbestos-Induced Mesothelioma Development and Cooperate to Accelerate Tumorigenesis

Deborah A. Altomare; Craig W. Menges; Jinfei Xu; Jianming Pei; Lili Zhang; Ara Tadevosyan; Erin Neumann-Domer; Zemin Liu; Michele Carbone; Ilse Chudoba; Andres J. Klein-Szanto; Joseph R. Testa

The CDKN2A/ARF locus encompasses overlapping tumor suppressor genes p16(INK4A) and p14(ARF), which are frequently co-deleted in human malignant mesothelioma (MM). The importance of p16(INK4A) loss in human cancer is well established, but the relative significance of p14(ARF) loss has been debated. The tumor predisposition of mice singly deficient for either Ink4a or Arf, due to targeting of exons 1α or 1β, respectively, supports the idea that both play significant and nonredundant roles in suppressing spontaneous tumors. To further test this notion, we exposed Ink4a(+/−) and Arf(+/−) mice to asbestos, the major cause of MM. Asbestos-treated Ink4a(+/−) and Arf(+/−) mice showed increased incidence and shorter latency of MM relative to wild-type littermates. MMs from Ink4a(+/−) mice exhibited biallelic inactivation of Ink4a, loss of Arf or p53 expression and frequent loss of p15(Ink4b). In contrast, MMs from Arf(+/−) mice exhibited loss of Arf expression, but did not require loss of Ink4a or Ink4b. Mice doubly deficient for Ink4a and Arf, due to deletion of Cdkn2a/Arf exon 2, showed accelerated asbestos-induced MM formation relative to mice deficient for Ink4a or Arf alone, and MMs exhibited biallelic loss of both tumor suppressor genes. The tumor suppressor function of Arf in MM was p53-independent, since MMs with loss of Arf retained functional p53. Collectively, these in vivo data indicate that both CDKN2A/ARF gene products suppress asbestos carcinogenicity. Furthermore, while inactivation of Arf appears to be crucial for MM pathogenesis, the inactivation of both p16(Ink4a) and p19(Arf) cooperate to accelerate asbestos-induced tumorigenesis.


Cancer Research | 2014

Tumor Suppressor Alterations Cooperate to Drive Aggressive Mesotheliomas with Enriched Cancer Stem Cells via a p53–miR-34a–c-Met Axis

Craig W. Menges; Yuwaraj Kadariya; Deborah A. Altomare; Jacqueline Talarchek; Erin Neumann-Domer; Yue Wu; Guang-Hui Xiao; Irina M. Shapiro; Vihren N. Kolev; Jonathan A. Pachter; Andres J. Klein-Szanto; Joseph R. Testa

Malignant mesothelioma is a highly aggressive, asbestos-related cancer frequently marked by mutations of both NF2 and CDKN2A. We demonstrate that germline knockout of one allele of each of these genes causes accelerated onset and progression of asbestos-induced malignant mesothelioma compared with asbestos-exposed Nf2(+/-) or wild-type mice. Ascites from some Nf2(+/-);Cdkn2a(+/-) mice exhibited large tumor spheroids, and tail vein injections of malignant mesothelioma cells established from these mice, but not from Nf2(+/-) or wild-type mice, produced numerous tumors in the lung, suggesting increased metastatic potential of tumor cells from Nf2(+/-);Cdkn2a(+/-) mice. Intraperitoneal injections of malignant mesothelioma cells derived from Nf2(+/-);Cdkn2a(+/-) mice into severe combined immunodeficient mice produced tumors that penetrated the diaphragm and pleural cavity and harbored increased cancer stem cells (CSC). Malignant mesothelioma cells from Nf2(+/-);Cdkn2a(+/-) mice stained positively for CSC markers and formed CSC spheroids in vitro more efficiently than counterparts from wild-type mice. Moreover, tumor cells from Nf2(+/-);Cdkn2a(+/-) mice showed elevated c-Met expression/activation, which was partly dependent on p53-mediated regulation of miR-34a and required for tumor migration/invasiveness and maintenance of the CSC population. Collectively, these studies demonstrate in vivo that inactivation of Nf2 and Cdkn2a cooperate to drive the development of highly aggressive malignant mesotheliomas characterized by enhanced tumor spreading capability and the presence of a CSC population associated with p53/miR-34a-dependent activation of c-Met. These findings suggest that cooperativity between losses of Nf2 and Cdkn2a plays a fundamental role in driving the highly aggressive tumorigenic phenotype considered to be a hallmark of malignant mesothelioma.


Genes & Cancer | 2010

A Phosphotyrosine Proteomic Screen Identifies Multiple Tyrosine Kinase Signaling Pathways Aberrantly Activated in Malignant Mesothelioma.

Craig W. Menges; Yibai Chen; Brooke T. Mossman; Jonathan Chernoff; Anthony T. Yeung; Joseph R. Testa

Malignant mesothelioma (MM) is a highly aggressive cancer that is refractory to all current chemotherapeutic regimens. Therefore, uncovering new rational therapeutic targets is imperative in the field. Tyrosine kinase signaling pathways are aberrantly activated in many human cancers and are currently being targeted for chemotherapeutic intervention. Thus, we sought to identify tyrosine kinases hyperactivated in MM. An unbiased phosphotyrosine proteomic screen was employed to identify tyrosine kinases activated in human MM cell lines. From this screen, we have identified novel signaling molecules, such as JAK1, STAT1, cortactin (CTTN), FER, p130Cas (BCAR1), SRC and FYN as tyrosine phosphorylated in human MM cell lines. Additionally, STAT1 and SRC family kinases (SFK) were confirmed to be active in primary MM specimens. We also confirmed that known signal transduction pathways previously implicated in MM, such as EGFR and MET signaling axes, are co-activated in the majority of human MM specimens and cell lines tested. EGFR, MET, and SFK appear to be co-activated in a significant proportion of MM cell lines, and dual inhibition of these kinases was demonstrated to be more efficacious for inhibiting MM cell viability and downstream effector signaling than inhibition of a single tyrosine kinase. Consequently, these data suggest that TKI mono-therapy may not represent an efficacious strategy for the treatment of MM, due to multiple tyrosine kinases potentially signaling redundantly to cellular pathways involved in tumor cell survival and proliferation.

Collaboration


Dive into the Craig W. Menges's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianming Pei

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinfei Xu

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deborah A. Altomare

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge