Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacqueline Talarchek is active.

Publication


Featured researches published by Jacqueline Talarchek.


Cancer Research | 2014

Germline mutation of Bap1 accelerates development of asbestos-induced malignant mesothelioma

Jinfei Xu; Yuwaraj Kadariya; Mitchell Cheung; Jianming Pei; Jacqueline Talarchek; Eleonora Sementino; Yinfei Tan; Craig W. Menges; Kathy Q. Cai; Samuel Litwin; Hongzhuang Peng; Jayashree Karar; Frank J. Rauscher; Joseph R. Testa

Malignant mesotheliomas are highly aggressive tumors usually caused by exposure to asbestos. Germline-inactivating mutations of BAP1 predispose to mesothelioma and certain other cancers. However, why mesothelioma is the predominate malignancy in some BAP1 families and not others, and whether exposure to asbestos is required for development of mesothelioma in BAP1 mutation carriers are not known. To address these questions experimentally, we generated a Bap1(+/-) knockout mouse model to assess its susceptibility to mesothelioma upon chronic exposure to asbestos. Bap1(+/-) mice exhibited a significantly higher incidence of asbestos-induced mesothelioma than wild-type (WT) littermates (73% vs. 32%, respectively). Furthermore, mesotheliomas arose at an accelerated rate in Bap1(+/-) mice than in WT animals (median survival, 43 weeks vs. 55 weeks after initial exposure, respectively) and showed increased invasiveness and proliferation. No spontaneous mesotheliomas were seen in unexposed Bap1(+/-) mice followed for up to 87 weeks of age. Mesothelioma cells from Bap1(+/-) mice showed biallelic inactivation of Bap1, consistent with its proposed role as a recessive cancer susceptibility gene. Unlike in WT mice, mesotheliomas from Bap1(+/-) mice did not require homozygous loss of Cdkn2a. However, normal mesothelial cells and mesothelioma cells from Bap1(+/-) mice showed downregulation of Rb through a p16(Ink4a)-independent mechanism, suggesting that predisposition of Bap1(+/-) mice to mesothelioma may be facilitated, in part, by cooperation between Bap1 and Rb. Drawing parallels to human disease, these unbiased genetic findings indicate that BAP1 mutation carriers are predisposed to the tumorigenic effects of asbestos and suggest that high penetrance of mesothelioma requires such environmental exposure.


Cancer Genetics and Cytogenetics | 2013

Further evidence for germline BAP1 mutations predisposing to melanoma and malignant mesothelioma.

Mitchell Cheung; Jacqueline Talarchek; Karen Schindeler; Eduardo Saraiva; Lynette S. Penney; Mark Ludman; Joseph R. Testa

We describe a new family with a novel germline BAP1 nonsense mutation, c.723T>G, which leads to a predicted truncated protein, p.Y241*, or nonsense-mediated decay of the BAP1 mRNA. The proband had uveal melanoma (UM), and his paternal family has a remarkable history of multiple cancers. The probands father had both pleural malignant mesothelioma (MM) and cutaneous melanoma (CM); a paternal uncle had lung cancer, CM, and UM; and a grandmother had CM. The findings in this family provide further support for the existence of a BAP1 cancer syndrome that predisposes to MM, various melanocytic neoplasms, and potentially other cancers. The fact that several members of the family manifested two or more different types of cancer suggests widespread BAP1-related tumor susceptibility targeting tissues of multiple organs. In addition, a review of BAP1 cancer syndrome families reported to date indicates that the location of the BAP1 mutation does not have any bearing on the spectrum of cancer types observed, either for mesothelial or melanocytic tumors.


Cancer Research | 2014

Tumor Suppressor Alterations Cooperate to Drive Aggressive Mesotheliomas with Enriched Cancer Stem Cells via a p53–miR-34a–c-Met Axis

Craig W. Menges; Yuwaraj Kadariya; Deborah A. Altomare; Jacqueline Talarchek; Erin Neumann-Domer; Yue Wu; Guang-Hui Xiao; Irina M. Shapiro; Vihren N. Kolev; Jonathan A. Pachter; Andres J. Klein-Szanto; Joseph R. Testa

Malignant mesothelioma is a highly aggressive, asbestos-related cancer frequently marked by mutations of both NF2 and CDKN2A. We demonstrate that germline knockout of one allele of each of these genes causes accelerated onset and progression of asbestos-induced malignant mesothelioma compared with asbestos-exposed Nf2(+/-) or wild-type mice. Ascites from some Nf2(+/-);Cdkn2a(+/-) mice exhibited large tumor spheroids, and tail vein injections of malignant mesothelioma cells established from these mice, but not from Nf2(+/-) or wild-type mice, produced numerous tumors in the lung, suggesting increased metastatic potential of tumor cells from Nf2(+/-);Cdkn2a(+/-) mice. Intraperitoneal injections of malignant mesothelioma cells derived from Nf2(+/-);Cdkn2a(+/-) mice into severe combined immunodeficient mice produced tumors that penetrated the diaphragm and pleural cavity and harbored increased cancer stem cells (CSC). Malignant mesothelioma cells from Nf2(+/-);Cdkn2a(+/-) mice stained positively for CSC markers and formed CSC spheroids in vitro more efficiently than counterparts from wild-type mice. Moreover, tumor cells from Nf2(+/-);Cdkn2a(+/-) mice showed elevated c-Met expression/activation, which was partly dependent on p53-mediated regulation of miR-34a and required for tumor migration/invasiveness and maintenance of the CSC population. Collectively, these studies demonstrate in vivo that inactivation of Nf2 and Cdkn2a cooperate to drive the development of highly aggressive malignant mesotheliomas characterized by enhanced tumor spreading capability and the presence of a CSC population associated with p53/miR-34a-dependent activation of c-Met. These findings suggest that cooperativity between losses of Nf2 and Cdkn2a plays a fundamental role in driving the highly aggressive tumorigenic phenotype considered to be a hallmark of malignant mesothelioma.


Molecular Cancer Research | 2012

Group I p21-Activated Kinases (PAKs) Promote Tumor Cell Proliferation and Survival through the AKT1 and Raf–MAPK Pathways

Craig W. Menges; Eleonora Sementino; Jacqueline Talarchek; Jinfei Xu; Jonathan Chernoff; Jeffrey R. Peterson; Joseph R. Testa

Group I p21–activated kinases (PAK) are important effectors of the small GTPases Rac and Cdc42, which regulate cell motility/migration, survival, proliferation, and gene transcription. Hyperactivation of these kinases have been reported in many tumor types, making PAKs attractive targets for therapeutic intervention. PAKs are activated by growth factor–mediated signaling and are negatively regulated by the tumor suppressor neurofibromatosis type 2 (NF2)/Merlin. Thus, tumors characterized by NF2 inactivation would be expected to show hyperactivated PAK signaling. On the basis of this rationale, we evaluated the status of PAK signaling in malignant mesothelioma, an aggressive neoplasm that is resistant to current therapies and shows frequent inactivation of NF2. We show that group I PAKs are activated in most mesotheliomas and mesothelioma cell lines and that genetic or pharmacologic inhibition of PAKs is sufficient to inhibit mesothelioma cell proliferation and survival. We also identify downstream effectors and signaling pathways that may contribute mechanistically to PAK-related tumorigenesis. Specifically, we show that inhibition of PAK results in attenuation of AKT and Raf–MAPK signaling and decreased tumor cell viability. Collectively, these data suggest that pharmacologic inhibition of group I PAKs may have therapeutic efficacy in tumors characterized by PAK activation. Mol Cancer Res; 10(9); 1178–88. ©2012 AACR.


Cancer Research | 2016

Germline BAP1 Mutational Landscape of Asbestos-Exposed Malignant Mesothelioma Patients with Family History of Cancer

Jill A. Ohar; Mitchell Cheung; Jacqueline Talarchek; Suzanne E. Howard; Timothy D. Howard; Mary Hesdorffer; Hongzhuang Peng; Frank J. Rauscher; Joseph R. Testa

Heritable mutations in the BAP1 tumor suppressor gene predispose individuals to mesothelioma and other cancers. However, a large-scale assessment of germline BAP1 mutation incidence and associated clinical features in mesothelioma patients with a family history of cancer has not been reported. Therefore, we examined the germline BAP1 mutation status of 150 mesothelioma patients with a family history of cancer, 50 asbestos-exposed control individuals with a family history of cancers other than mesothelioma, and 153 asbestos-exposed individuals without familial cancer. No BAP1 alterations were found in control cohorts, but were identified in nine of 150 mesothelioma cases (6%) with a family history of cancer. Alterations among these cases were characterized by both missense and frameshift mutations, and enzymatic activity of BAP1 missense mutants was decreased compared with wild-type BAP1. Furthermore, BAP1 mutation carriers developed mesothelioma at an earlier age that was more often peritoneal than pleural (five of nine) and exhibited improved long-term survival compared to mesothelioma patients without BAP1 mutations. Moreover, many tumors harboring BAP1 germline mutations were associated with BAP1 syndrome, including mesothelioma and ocular/cutaneous melanomas, as well as renal, breast, lung, gastric, and basal cell carcinomas. Collectively, these findings suggest that mesothelioma patients presenting with a family history of cancer should be considered for BAP1 genetic testing to identify those individuals who might benefit from further screening and routine monitoring for the purpose of early detection and intervention.


Cancer Prevention Research | 2016

Inflammation-Related IL1β/IL1R Signaling Promotes the Development of Asbestos-Induced Malignant Mesothelioma

Yuwaraj Kadariya; Craig W. Menges; Jacqueline Talarchek; Kathy Q. Cai; Andres J. Klein-Szanto; Ralph A. Pietrofesa; Melpo Christofidou-Solomidou; Mitchell Cheung; Brooke T. Mossman; Arti Shukla; Joseph R. Testa

Exposure to asbestos is causally associated with the development of malignant mesothelioma, a cancer of cells lining the internal body cavities. Malignant mesothelioma is an aggressive cancer resistant to all current therapies. Once inhaled or ingested, asbestos causes inflammation in and around tissues that come in contact with these carcinogenic fibers. Recent studies suggest that inflammation is a major contributing factor in the development of many types of cancer, including malignant mesothelioma. The NALP3/NLRP3 inflammasome, including the component ASC, is thought to be an important mediator of inflammation in cells that sense extracellular insults, such as asbestos, and activate a signaling cascade resulting in release of mature IL1β and recruitment of inflammatory cells. To determine if inflammasome-mediated inflammation contributes to asbestos-induced malignant mesothelioma, we chronically exposed Asc-deficient mice and wild-type littermates to asbestos and evaluated differences in tumor incidence and latency. The Asc-deficient mice showed significantly delayed tumor onset and reduced malignant mesothelioma incidence compared with wild-type animals. We also tested whether inflammation-related release of IL1β contributes to tumor development in an accelerated mouse model of asbestos-induced malignant mesothelioma. Nf2+/−;Cdkn2a+/− mice exposed to asbestos in the presence of anakinra, an IL1 receptor (IL1R) antagonist, showed a marked delay in the median time of malignant mesothelioma onset compared with similarly exposed mice given vehicle control (33.1 weeks vs. 22.6 weeks, respectively). Collectively, these studies provide evidence for a link between inflammation-related IL1β/IL1R signaling and the development of asbestos-induced malignant mesothelioma. Furthermore, these findings provide rationale for chemoprevention strategies targeting IL1β/IL1R signaling in high-risk, asbestos-exposed populations. Cancer Prev Res; 9(5); 406–14. ©2016 AACR.


Cancer Letters | 2015

Germline BAP1 mutation in a family with high incidence of multiple primary cancers and a potential gene-environment interaction.

Mitchell Cheung; Yuwaraj Kadariya; Jacqueline Talarchek; Jianming Pei; Jill A. Ohar; Omar R. Kayaleh; Joseph R. Testa

We report a high-risk cancer family with multiple mesotheliomas, cutaneous melanomas, basal cell carcinomas, and meningiomas segregating with a germline nonsense mutation in BAP1 (c.1938T>A; p.Y646X). Notably, most (four of five) mesotheliomas were peritoneal rather than the usually more common pleural form of the disease, and all five mesothelioma patients also developed second or third primary cancers, including two with meningiomas. Another family member developed both cutaneous melanoma and breast cancer. Two family members had basal cell carcinomas, and six others had melanocytic tumors, including four cutaneous melanomas, one uveal melanoma, and one benign melanocytic tumor. The family resides in a subtropical area, and several members had suspected exposure to asbestos either occupationally or in the home. We hypothesize that the concurrence of a genetic predisposing factor and environmental exposure to asbestos and UV irradiation contributed to the high incidence of multiple cancers seen in this family, specifically mesothelioma and various uveal/skin tumors, respectively.


Neoplasia | 2015

Constitutively Active Akt1 Cooperates with KRasG12D to Accelerate In Vivo Pancreatic Tumor Onset and Progression

Toya M. Albury; Veethika Pandey; Sarah B. Gitto; Lisette Dominguez; Lina Spinel; Jacqueline Talarchek; Andres J. Klein-Szanto; Joseph R. Testa; Deborah A. Altomare

BACKGROUND AND AIMS: Pancreatic adenocarcinoma is a deadly disease characterized by metastatic progression and resistance to conventional therapeutics. Mutation of KRAS is the most frequent early event in pancreatic tumor progression. AKT isoforms are frequently activated in pancreatic cancer, and reports have implicated hyperactivation of AKT1, as well as AKT2, in pancreatic tumor formation. The objective here is to delineate the role of AKT in facilitating in vivo pancreatic tumor progression in the context of KRAS mutation and predisposition to pancreatic cancer. METHODS: Mice with Akt1 and KRas mutant alleles expressed using the pancreas Pdx promoter were mated to characterize the incidence and frequency of histologic and genetic alterations known to occur commonly in human pancreatic ductal adenocarcinoma. RESULTS: Active Akt1 (Akt1Myr, containing a myristoylation sequence) cooperated with active mutant KRasG12D to accelerate pancreatic carcinoma onset and progression and increase phosphorylation of downstream effectors in the Akt pathway. Mucin and smooth muscle actin expression was found in and around pancreatic intraepithelial neoplasms (PanINs), and accelerated time to metastasis was found in Akt1Myr/KRasG12D mice. CONCLUSIONS: In contrast to prior reports of pancreatic KRas mutant mice mated with mice deficient for various tumor suppressor genes, which resulted in aggressive disease within a few months of age, Akt1Myr/KRasG12D mice enabled the study of PanINs and spontaneous pancreatic transformation more characteristic of human pancreatic progression in elderly individuals. The Akt1Myr/KRasG12D model holds promise for delineating the tumor biology and biomarkers critical for understanding their cooperation in cancer oncogenesis and future targeting in therapeutic strategies.


Cancer Genetics and Cytogenetics | 2015

An asbestos-exposed family with multiple cases of pleural malignant mesothelioma without inheritance of a predisposing BAP1 mutation

Mitchell Cheung; Yuwaraj Kadariya; Jianming Pei; Jacqueline Talarchek; Francesco Facciolo; Paolo Visca; Luisella Righi; Ilaria Cozzi; Joseph R. Testa; Valeria Ascoli

We report a family with domestic exposure to asbestos and diagnosis of multiple cancers, including eight pleural malignant mesotheliomas and several other lung or pleural tumors. DNA sequence analysis revealed no evidence for an inherited mutation of BAP1. Sequence analysis of other potentially relevant genes, including TP53, CDKN2A, and BARD1, also revealed no mutation. DNA microarray analysis of tissue from two mesotheliomas revealed multiple genomic imbalances, including consistent losses of overlapping segments in 2q, 6q, 9p, 14q, 15q, and 22q, but no losses of chromosome 3 harboring the BAP1 locus. However, the results of immunohistochemical analysis demonstrated loss of nuclear BAP1 staining in three of six mesotheliomas tested, suggesting that somatic alterations of BAP1 occurred in a subset of tumors from this family. Since mesothelioma could be confirmed in only a single generation, domestic exposure to asbestos may be the predominant cause of mesothelioma in this family. Given the existence of unspecified malignant pleural tumors and lung cancers in a prior generation, we discuss the possibility that some other tumor susceptibility or modifier gene(s) may contribute to the high incidence of mesothelioma in this family. Because the incidence of mesothelioma in this family is higher than that expected even in workers heavily exposed to asbestos, we conclude that both asbestos exposure and genetic factors have played a role in the high rate of mesothelioma and potentially other pleural or lung cancers seen in this family. 


BMC Cancer | 2015

Mesothelioma patient derived tumor xenografts with defined BAP1 mutations that mimic the molecular characteristics of human malignant mesothelioma

Neetu Kalra; Jingli Zhang; Anish Thomas; Liqiang Xi; Mitchell Cheung; Jacqueline Talarchek; Sandra Burkett; Maria Tsokos; Yuanbin Chen; Mark Raffeld; Markku Miettinen; Ira Pastan; Joseph R. Testa; Raffit Hassan

BackgroundThe development and evaluation of new therapeutic approaches for malignant mesothelioma has been sparse due, in part, to lack of suitable tumor models.MethodsWe established primary mesothelioma cultures from pleural and ascitic fluids of five patients with advanced mesothelioma. Electron microscopy and immunohistochemistry (IHC) confirmed their mesothelial origin. Patient derived xenografts were generated by injecting the cells in nude or SCID mice, and malignant potential of the cells was analyzed by soft agar colony assay. Molecular profiles of the primary patient tumors, early passage cell cultures, and patient derived xenografts were assessed using mutational analysis, fluorescence in situ hybridization (FISH) analysis and IHC.ResultsPrimary cultures from all five tumors exhibited morphologic and IHC features consistent to those of mesothelioma cells. Mutations of BAP1 and CDKN2A were each detected in four tumors. BAP1 mutation was associated with the lack of expression of BAP1 protein. Three cell cultures, all of which were derived from BAP1 mutant primary tumors, exhibited anchorage independent growth and also formed tumors in mice, suggesting that BAP1 loss may enhance tumor growth in vivo. Both early passage cell cultures and mouse xenograft tumors harbored BAP1 mutations and CDKN2A deletions identical to those found in the corresponding primary patient tumors.ConclusionsThe mesothelioma patient derived tumor xenografts with mutational alterations that mimic those observed in patient tumors which we established can be used for preclinical development of novel drug regimens and for studying the functional aspects of BAP1 biology in mesothelioma.

Collaboration


Dive into the Jacqueline Talarchek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mitchell Cheung

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianming Pei

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deborah A. Altomare

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge