Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianming Pei is active.

Publication


Featured researches published by Jianming Pei.


Nature Genetics | 2011

Germline BAP1 mutations predispose to malignant mesothelioma

Joseph R. Testa; Mitchell Cheung; Jianming Pei; Jennifer E. Below; Yinfei Tan; Eleonora Sementino; Nancy J. Cox; A. Umran Dogan; Harvey I. Pass; Sandra Trusa; Mary Hesdorffer; Masaki Nasu; Amy Powers; Zeyana Rivera; Sabahattin Comertpay; Mika Tanji; Giovanni Gaudino; Haining Yang; Michele Carbone

Because only a small fraction of asbestos-exposed individuals develop malignant mesothelioma, and because mesothelioma clustering is observed in some families, we searched for genetic predisposing factors. We discovered germline mutations in the gene encoding BRCA1 associated protein-1 (BAP1) in two families with a high incidence of mesothelioma, and we observed somatic alterations affecting BAP1 in familial mesotheliomas, indicating biallelic inactivation. In addition to mesothelioma, some BAP1 mutation carriers developed uveal melanoma. We also found germline BAP1 mutations in 2 of 26 sporadic mesotheliomas; both individuals with mutant BAP1 were previously diagnosed with uveal melanoma. We also observed somatic truncating BAP1 mutations and aberrant BAP1 expression in sporadic mesotheliomas without germline mutations. These results identify a BAP1-related cancer syndrome that is characterized by mesothelioma and uveal melanoma. We hypothesize that other cancers may also be involved and that mesothelioma predominates upon asbestos exposure. These findings will help to identify individuals at high risk of mesothelioma who could be targeted for early intervention.


Genes, Chromosomes and Cancer | 2001

Genomic imbalances in human lung adenocarcinomas and squamous cell carcinomas

Jianming Pei; Binaifer R. Balsara; Wu Li; Samuel Litwin; Edward Gabrielson; Madelyn Feder; Jin Jen; Joseph R. Testa

Comparative genomic hybridization analysis was performed on 67 non‐small‐cell lung cancers (NSCLCs), including 32 squamous cell carcinomas (SCCs) and 35 adenocarcinomas (ACs), to identify differences in the patterns of genomic imbalance between these two histologic subtypes. Among the entire tumor set, the chromosome arms most often overrepresented were 1q, 3q, 5p, and 8q, each detected in 50–55% of cases. The most frequently underrepresented arms were 9q, 3p, 8p, and 17p. The number of imbalances was similar in SCCs and ACs (median number/case: 12 and 11, respectively). Moreover, many imbalances, such as gains of 1q, 5p, and 8q, occurred at a high frequency in both histologic subgroups. Several statistically significant differences, however, were found. The most prominent difference was gain of 3q24‐qter, seen in 81% of SCCs compared with 31% of ACs (P < 0.0001), with amplification at 3q25‐26 being detected in eight of 32 (25%) SCCs but in only two of 35 (6%) ACs. Gain of 20p13 and loss of 4q also were seen at a significantly higher rate in SCCs than in ACs, whereas overrepresentation of 6p was more common in ACs. Gains of 7q and 8q each were associated with higher‐stage tumors and either positive nodal involvement or higher tumor grade. These data suggest that genes located in several chromosomal regions, particularly 3q25‐26, may be associated with phenotypic properties that differentiate lung SCCs from ACs. Furthermore, certain imbalances, prominent among them gains of 7q and 8q, may be indicative of tumor aggressiveness in NSCLCs.


Cancer Research | 2014

Germline mutation of Bap1 accelerates development of asbestos-induced malignant mesothelioma

Jinfei Xu; Yuwaraj Kadariya; Mitchell Cheung; Jianming Pei; Jacqueline Talarchek; Eleonora Sementino; Yinfei Tan; Craig W. Menges; Kathy Q. Cai; Samuel Litwin; Hongzhuang Peng; Jayashree Karar; Frank J. Rauscher; Joseph R. Testa

Malignant mesotheliomas are highly aggressive tumors usually caused by exposure to asbestos. Germline-inactivating mutations of BAP1 predispose to mesothelioma and certain other cancers. However, why mesothelioma is the predominate malignancy in some BAP1 families and not others, and whether exposure to asbestos is required for development of mesothelioma in BAP1 mutation carriers are not known. To address these questions experimentally, we generated a Bap1(+/-) knockout mouse model to assess its susceptibility to mesothelioma upon chronic exposure to asbestos. Bap1(+/-) mice exhibited a significantly higher incidence of asbestos-induced mesothelioma than wild-type (WT) littermates (73% vs. 32%, respectively). Furthermore, mesotheliomas arose at an accelerated rate in Bap1(+/-) mice than in WT animals (median survival, 43 weeks vs. 55 weeks after initial exposure, respectively) and showed increased invasiveness and proliferation. No spontaneous mesotheliomas were seen in unexposed Bap1(+/-) mice followed for up to 87 weeks of age. Mesothelioma cells from Bap1(+/-) mice showed biallelic inactivation of Bap1, consistent with its proposed role as a recessive cancer susceptibility gene. Unlike in WT mice, mesotheliomas from Bap1(+/-) mice did not require homozygous loss of Cdkn2a. However, normal mesothelial cells and mesothelioma cells from Bap1(+/-) mice showed downregulation of Rb through a p16(Ink4a)-independent mechanism, suggesting that predisposition of Bap1(+/-) mice to mesothelioma may be facilitated, in part, by cooperation between Bap1 and Rb. Drawing parallels to human disease, these unbiased genetic findings indicate that BAP1 mutation carriers are predisposed to the tumorigenic effects of asbestos and suggest that high penetrance of mesothelioma requires such environmental exposure.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Activated TNF-α/NF-κB signaling via down-regulation of Fas-associated factor 1 in asbestos-induced mesotheliomas from Arf knockout mice

Deborah A. Altomare; Craig W. Menges; Jianming Pei; Lili Zhang; Kristine L. Skele-Stump; Michele Carbone; Agnes B. Kane; Joseph R. Testa

The human CDKN2A locus encodes 2 distinct proteins, p16(INK4A) and p14(ARF) [mouse p19(Arf)], designated INK4A (inhibitor of cyclin dependent kinase 4) and ARF (alternative reading frame) here, that are translated from alternatively spliced mRNAs. Human ARF is implicated as a tumor suppressor gene, mainly in association with the simultaneous deletion of INK4A. However, questions remain as to whether loss of ARF alone is sufficient to drive tumorigenesis. Here, we report that mice deficient for Arf are susceptible to accelerated asbestos-induced malignant mesothelioma (MM). MMs arising in Arf (+/−) mice consistently exhibit biallelic inactivation of Arf, but, unexpectedly, do not acquire additional recurrent genetic alterations that we previously identified in asbestos-induced MMs arising in Nf2 (+/−) mice. Array CGH analysis was used to detect a recurrent deletion at chromosome 4C6 in MMs from Arf (+/−) mice. A candidate gene in this region, Faf1 (FAS-associated factor 1), was further explored, because it encodes a protein implicated in tumor cell survival and in the pathogenesis of some human tumor types. We confirmed hemizygous loss of Faf1 and down-regulation of Faf1 protein in a series of MMs from Arf (+/−) mice, and we then showed that Faf1 regulates TNF-α-mediated NF-κB signaling, a pathway previously implicated in asbestos-induced oncogenesis of human mesothelial cells. Collectively, these data indicate that Arf inactivation has a significant role in driving MM pathogenesis, and implicate Faf1 as a key component in the TNF-α/NF-κB signaling node that has now been independently implicated in asbestos-induced oncogenesis.


Genes, Chromosomes and Cancer | 2001

Human hepatocellular carcinoma is characterized by a highly consistent pattern of genomic imbalances, including frequent loss of 16q23.1–24.1

Binaifer R. Balsara; Jianming Pei; Assunta De Rienzo; Daniela Simon; Alessandra Tosolini; You Yong Lu; Fu Min Shen; Xianglin Fan; Wen Yao Lin; Kenneth H. Buetow; W. Thomas London; Joseph R. Testa

Comparative genomic hybridization (CGH) analysis was used to identify chromosomal imbalances in 52 human primary hepatocellular carcinomas (HCCs). The most prominent changes were gains of part or all of chromosome arms 8q (83% of cases) and 1q (73%) and loss of 16q (63%). Other commonly overrepresented sites were 5p, 7q, and Xq. Recurrent sites of DNA sequence amplification included 8q23–24 (five cases) and 11q13–14 (four cases). Other frequently underrepresented sites were 4q, 8p, 16p, and 17p. Taken collectively, these findings and data from other CGH studies of HCCs define a subset of chromosome segments that are consistently over‐ or underrepresented and highlight sites of putative oncogenes and tumor suppressor genes, respectively, involved in hepatocellular oncogenesis. Loss of heterozygosity analysis with a panel of polymorphic microsatellite markers distributed along 16q defined a minimal region of chromosomal loss at 16q23.1–24.1, suggesting that this region harbors a tumor suppressor gene whose loss/inactivation may contribute to the pathogenesis of many HCCs.


International Journal of Cancer | 2009

Genomic events associated with progression of pleural malignant mesothelioma

Sergey V. Ivanov; Jeremy Miller; Robert Lucito; Chunlao Tang; Alla V. Ivanova; Jianming Pei; Michele Carbone; Christina Cruz; Amanda Beck; Craig P. Webb; Daisuke Nonaka; Joseph R. Testa; Harvey I. Pass

Pleural malignant mesothelioma (MM) is an aggressive cancer with a very long latency and a very short median survival. Little is known about the genetic events that trigger MM and their relation to poor outcome. The goal of our study was to characterize major genomic gains and losses associated with MM origin and progression and assess their clinical significance. We performed Representative Oligonucleotide Microarray Analysis (ROMA) on DNA isolated from tumors of 22 patients who recurred at variable interval with the disease after surgery. The total number of copy number alterations (CNA) and frequent imbalances for patients with short time (<12 months from surgery) and long time to recurrence were recorded and mapped using the Analysis of Copy Errors algorithm. We report a profound increase in CNA in the short‐time recurrence group with most chromosomes affected, which can be explained by chromosomal instability associated with MM. Deletions in chromosomes 22q12.2, 19q13.32 and 17p13.1 appeared to be the most frequent events (55‐74%) shared between MM patients followed by deletions in 1p, 9p, 9q, 4p, 3p and gains in 5p, 18q, 8q and 17q (23‐55%). Deletions in 9p21.3 encompassing CDKN2A/ARF and CDKN2B were characterized as specific for the short‐term recurrence group. Analysis of the minimal common areas of frequent gains and losses identified candidate genes that may be involved in different stages of MM: OSM (22q12.2), FUS1 and PL6 (3p21.3), DNAJA1 (9p21.1) and CDH2 (18q11.2‐q12.3). Imbalances seen by ROMA were confirmed by Affymetrix genome analysis in a subset of samples.


Breast Cancer Research and Treatment | 2013

Inflammatory breast cancer (IBC): clues for targeted therapies

Sandra V. Fernandez; Fredika M. Robertson; Jianming Pei; Lucy Aburto-Chumpitaz; Zhaomei Mu; Khoi Chu; R. K. Alpaugh; Yong Huang; Yu Cao; Zaiming Ye; Kathy Q. Cai; Km Boley; Andres J. Klein-Szanto; Karthik Devarajan; Sankar Addya; Massimo Cristofanilli

Inflammatory breast cancer (IBC) is the most aggressive type of advanced breast cancer characterized by rapid proliferation, early metastatic development and poor prognosis. Since there are few preclinical models of IBC, there is a general lack of understanding of the complexity of the disease. Recently, we have developed a new model of IBC derived from the pleural effusion of a woman with metastatic secondary IBC. FC-IBC02 cells are triple negative and form clusters (mammospheres) in suspension that are strongly positive for E-cadherin, β-catenin and TSPAN24, all adhesion molecules that play an important role in cell migration and invasion. FC-IBC02 cells expressed stem cell markers and some, but not all of the characteristics of cells undergoing epithelial mesenchymal transition (EMT). Breast tumor FC-IBC02 xenografts developed quickly in SCID mice with the presence of tumor emboli and the development of lymph node and lung metastases. Remarkably, FC-IBC02 cells were able to produce brain metastasis in mice on intracardiac or intraperitoneal injections. Genomic studies of FC-IBC02 and other IBC cell lines showed that IBC cells had important amplification of 8q24 where MYC, ATAD2 and the focal adhesion kinase FAK1 are located. MYC and ATAD2 showed between 2.5 and 7 copies in IBC cells. FAK1, which plays important roles in anoikis resistance and tumor metastasis, showed 6–4 copies in IBC cells. Also, CD44 was amplified in triple-negative IBC cells (10–3 copies). Additionally, FC-IBC02 showed amplification of ALK and NOTCH3. These results indicate that MYC, ATAD2, CD44, NOTCH3, ALK and/or FAK1 may be used as potential targeted therapies against IBC.


PLOS ONE | 2011

Losses of Both Products of the Cdkn2a/Arf Locus Contribute to Asbestos-Induced Mesothelioma Development and Cooperate to Accelerate Tumorigenesis

Deborah A. Altomare; Craig W. Menges; Jinfei Xu; Jianming Pei; Lili Zhang; Ara Tadevosyan; Erin Neumann-Domer; Zemin Liu; Michele Carbone; Ilse Chudoba; Andres J. Klein-Szanto; Joseph R. Testa

The CDKN2A/ARF locus encompasses overlapping tumor suppressor genes p16(INK4A) and p14(ARF), which are frequently co-deleted in human malignant mesothelioma (MM). The importance of p16(INK4A) loss in human cancer is well established, but the relative significance of p14(ARF) loss has been debated. The tumor predisposition of mice singly deficient for either Ink4a or Arf, due to targeting of exons 1α or 1β, respectively, supports the idea that both play significant and nonredundant roles in suppressing spontaneous tumors. To further test this notion, we exposed Ink4a(+/−) and Arf(+/−) mice to asbestos, the major cause of MM. Asbestos-treated Ink4a(+/−) and Arf(+/−) mice showed increased incidence and shorter latency of MM relative to wild-type littermates. MMs from Ink4a(+/−) mice exhibited biallelic inactivation of Ink4a, loss of Arf or p53 expression and frequent loss of p15(Ink4b). In contrast, MMs from Arf(+/−) mice exhibited loss of Arf expression, but did not require loss of Ink4a or Ink4b. Mice doubly deficient for Ink4a and Arf, due to deletion of Cdkn2a/Arf exon 2, showed accelerated asbestos-induced MM formation relative to mice deficient for Ink4a or Arf alone, and MMs exhibited biallelic loss of both tumor suppressor genes. The tumor suppressor function of Arf in MM was p53-independent, since MMs with loss of Arf retained functional p53. Collectively, these in vivo data indicate that both CDKN2A/ARF gene products suppress asbestos carcinogenicity. Furthermore, while inactivation of Arf appears to be crucial for MM pathogenesis, the inactivation of both p16(Ink4a) and p19(Arf) cooperate to accelerate asbestos-induced tumorigenesis.


Genes, Chromosomes and Cancer | 2009

High density DNA array analysis reveals distinct genomic profiles in a subset of gastrointestinal stromal tumors

Martin G. Belinsky; Yuliya Skorobogatko; Lori Rink; Jianming Pei; Kathy Q. Cai; Lisa Vanderveer; Erin Merkel; Chi Tarn; Burton L. Eisenberg; Margaret von Mehren; Joseph R. Testa; Andrew K. Godwin

Gastrointestinal stromal tumors (GISTs) generally harbor activating mutations in KIT or platelet‐derived growth facter receptor (PDGFRA). Mutations in these receptor tyrosine kinases lead to dysregulation of downstream signaling pathways that contribute to GIST pathogenesis. GISTs with KIT or PDGFRA mutations also undergo secondary cytogenetic alterations that may indicate the involvement of additional genes important in tumor progression. Approximately 10–15% of adult and 85% of pediatric GISTs do not have mutations in KIT or in PDGFRA. Most mutant adult GISTs display large‐scale genomic alterations, but little is known about the mutation‐negative tumors. Using genome‐wide DNA arrays, we investigated genomic imbalances in a set of 31 GISTs, including 10 KIT/PDGFRA mutation‐negative tumors from nine adults and one pediatric case and 21 mutant tumors. Although all 21 mutant GISTs exhibited multiple copy number aberrations, notably losses, eight of the 10 KIT/PDGFRA mutation‐negative GISTs exhibited few or no genomic alterations. One KIT/PDGFRA mutation‐negative tumor exhibiting numerous genomic changes was found to harbor an alternate activating mutation, in the serine‐threonine kinase BRAF. The only other mutation‐negative GIST with significant chromosomal imbalances was a recurrent metastatic tumor found to harbor a homozygous deletion in chromosome arm 9p. Similar findings in several KIT‐mutant GISTs identified a minimal overlapping region of deletion of ∼0.28 Mbp in 9p21.3 that includes only the CDKN2A/2B genes, which encode inhibitors of cell‐cycle kinases. These results suggest that GISTs without activating kinase mutations, whether pediatric or adult, generally exhibit a much lower level of cytogenetic progression than that observed in mutant GISTs.


Oncogene | 2010

The promyelocytic leukemia zinc-finger gene, PLZF, is frequently downregulated in malignant mesothelioma cells and contributes to cell survival.

Mitchell Cheung; Jianming Pei; Yaguang Pei; Suresh C. Jhanwar; Harvey I. Pass; Joseph R. Testa

DNA copy number analysis was performed, using single-nucleotide polymorphism mapping arrays, to fine map genomic imbalances in human malignant mesothelioma (MM) cell lines derived from primary tumors. Chromosomal losses accounted for the majority of genomic imbalances. All 22 cell lines examined showed homozygous deletions of 9p21.3, centering at the CDKN2A/ARF and CDKN2B loci. Other commonly underrepresented segments included 1p36, 1p22, 3p21–22, 4q13, 4q34, 11q23, 13q12–13, 14q32, 15q15, 18q12, and 22q12, each observed in 55–90% of cell lines. Focal deletions of 11q23 encompassed the transcriptional repressor gene promyelocytic leukemia zinc finger (PLZF), which was validated by analysis of genomic DNA using real-time polymerase chain reaction (PCR). Semi-quantitative RT–PCR and immunoblot analysis revealed that PLZF is greatly downregulated in MM cell lines compared with non-malignant mesothelial cells. Ectopic expression of PLZF in PLZF-deficient MM cells resulted in decreased cell viability, reduced colony formation, as well as increased apoptosis, the latter based on results of various cell death assays and the observation of increased cleavage of caspase 3, PARP, and Mcl-1. These data indicate that deletions of PLZF are a common occurrence in MM and that downregulation of PLZF may contribute to MM pathogenesis by promoting cell survival.

Collaboration


Dive into the Jianming Pei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathy Q. Cai

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yinfei Tan

Fox Chase Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge