Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cristian Bassi is active.

Publication


Featured researches published by Cristian Bassi.


Hepatology | 2012

Liver tumorigenicity promoted by microRNA‐221 in a mouse transgenic model

Elisa Callegari; Bahaeldin K. Elamin; F. Giannone; Maddalena Milazzo; Giuseppe Altavilla; Francesca Fornari; Luciano Giacomelli; Lucilla D'Abundo; Manuela Ferracin; Cristian Bassi; Barbara Zagatti; Fabio Corrà; Elena Miotto; Laura Lupini; Luigi Bolondi; Laura Gramantieri; Carlo M. Croce; Silvia Sabbioni; Massimo Negrini

MicroRNA‐221 (miR‐221) is one of the most frequently and consistently up‐regulated microRNAs (miRNAs) in human cancer. It has been hypothesized that miR‐221 may act as a tumor promoter. To demonstrate this, we developed a transgenic (TG) mouse model that exhibits an inappropriate overexpression of miR‐221 in the liver. Immunoblotting and immunostaining confirmed a concomitant down‐regulation of miR‐221 target proteins. This TG model is characterized by the emergence of spontaneous nodular liver lesions in approximately 50% of male mice and by a strong acceleration of tumor development in 100% of mice treated with diethylnitrosamine. Similarly to human hepatocellular carcinoma, tumors are characterized by a further increase in miR‐221 expression and a concomitant inhibition of its target protein‐coding genes (i.e., cyclin‐dependent kinase inhibitor [Cdkn]1b/p27, Cdkn1c/p57, and B‐cell lymphoma 2–modifying factor). To validate the tumor‐promoting effect of miR‐221, we showed that in vivo delivery of anti‐miR‐221 oligonucleotides leads to a significant reduction of the number and size of tumor nodules. Conclusions: This study not only establishes that miR‐221 can promote liver tumorigenicity, but it also establishes a valuable animal model to perform preclinical investigations for the use of anti‐miRNA approaches aimed at liver cancer therapy. (HEPATOLOGY 2012;56:1025–1033)


Molecular Cancer | 2013

miR-125b targets erythropoietin and its receptor and their expression correlates with metastatic potential and ERBB2/HER2 expression

Manuela Ferracin; Cristian Bassi; Massimo Pedriali; Sara Pagotto; Lucilla D’Abundo; Barbara Zagatti; Fabio Corrà; Gentian Musa; Elisa Callegari; Laura Lupini; Stefano Volpato; Patrizia Querzoli; Massimo Negrini

BackgroundThe microRNA 125b is a double-faced gene expression regulator described both as a tumor suppressor gene (in solid tumors) and an oncogene (in hematologic malignancies). In human breast cancer, it is one of the most down-regulated miRNAs and is able to modulate ERBB2/3 expression. Here, we investigated its targets in breast cancer cell lines after miRNA-mimic transfection. We examined the interactions of the validated targets with ERBB2 oncogene and the correlation of miR-125b expression with clinical variables.MethodsMiR-125b possible targets were identified after transfecting a miRNA-mimic in MCF7 cell line and analyzing gene expression modifications with Agilent microarrays and Sylamer bioinformatic tool. Erythropoietin (EPO) and its receptor (EPOR) were validated as targets of miR-125b by luciferase assay and their expression was assessed by RT-qPCR in 42 breast cancers and 13 normal samples. The molecular talk between EPOR and ERBB2 transcripts, through miR-125b, was explored transfecting MDA-MD-453 and MDA-MB-157 with ERBB2 RNA and using RT-qPCR.ResultsWe identified a panel of genes down-regulated after miR-125b transfection and putative targets of miR-125b. Among them, we validated erythropoietin (EPO) and its receptor (EPOR) - frequently overexpressed in breast cancer - as true targets of miR-125b. Moreover, we explored possible correlations with clinical variables and we found a down-regulation of miR-125b in metastatic breast cancers and a significant positive correlation between EPOR and ERBB2/HER2 levels, that are both targets of miR-125b and function as competing endogenous RNAs (ceRNAs).ConclusionsTaken together our results show a mechanism for EPO/EPOR and ERBB2 co-regulation in breast cancer and confirm the importance of miR-125b in controlling clinically-relevant cancer features.


Clinical Cancer Research | 2014

microRNAome Expression in Chronic Lymphocytic Leukemia: Comparison with Normal B-cell Subsets and Correlations with Prognostic and Clinical Parameters

Massimo Negrini; Giovanna Cutrona; Cristian Bassi; Sonia Fabris; Barbara Zagatti; Monica Colombo; Manuela Ferracin; Lucilla D'Abundo; Elena Saccenti; Serena Matis; Marta Lionetti; Luca Agnelli; Massimo Gentile; Anna Grazia Recchia; Sabrina Bossio; Daniele Reverberi; Gian Matteo Rigolin; George A. Calin; Silvia Sabbioni; Giandomenico Russo; Pierfrancesco Tassone; Fortunato Morabito; Manlio Ferrarini; Antonino Neri

Purpose: Despite its indolent nature, chronic lymphocytic leukemia (CLL) remains an incurable disease. To establish the potential pathogenic role of miRNAs, the identification of deregulated miRNAs in CLL is crucial. Experimental Design: We analyzed the expression of 723 mature miRNAs in 217 early-stage CLL cases and in various different normal B-cell subpopulations from tonsils and peripheral blood. Results: Our analyses indicated that CLL cells exhibited a miRNA expression pattern that was most similar to the subsets of antigen-experienced and marginal zone–like B cells. These normal subpopulations were used as reference to identify differentially expressed miRNAs in comparison with CLL. Differences related to the expression of 25 miRNAs were found to be independent from IGHV mutation status or cytogenetic aberrations. These differences, confirmed in an independent validation set, led to a novel comprehensive description of miRNAs potentially involved in CLL. We also identified miRNAs whose expression was distinctive of cases with mutated versus unmutated IGHV genes or cases with 13q, 11q, and 17p deletions and trisomy 12. Finally, analysis of clinical data in relation to miRNA expression revealed that miR26a, miR532-3p, miR146-5p, and miR29c* were strongly associated with progression-free survival. Conclusion: This study provides novel information on miRNAs expressed by CLL and normal B-cell subtypes, with implication on the cell of origin of CLL. In addition, our findings indicate a number of deregulated miRNAs in CLL, which may play a pathogenic role and promote disease progression. Collectively, this information can be used for developing miRNA-based therapeutic strategies in CLL. Clin Cancer Res; 20(15); 4141–53. ©2014 AACR.


Frontiers in Genetics | 2013

miR-221 affects multiple cancer pathways by modulating the level of hundreds messenger RNAs.

Laura Lupini; Cristian Bassi; Manuela Ferracin; Nenad Bartonicek; Lucilla D'Abundo; Barbara Zagatti; Elisa Callegari; Gentian Musa; Farzaneh Moshiri; Laura Gramantieri; Fernando J. Corrales; Anton J. Enright; Silvia Sabbioni; Massimo Negrini

microRNA miR-221 is frequently over-expressed in a variety of human neoplasms. Aim of this study was to identify new miR-221 gene targets to improve our understanding on the molecular tumor-promoting mechanisms affected by miR-221. Gene expression profiling of miR-221-transfected-SNU-398 cells was analyzed by the Sylamer algorithm to verify the enrichment of miR-221 targets among down-modulated genes. This analysis revealed that enforced expression of miR-221 in SNU-398 cells caused the down-regulation of 602 mRNAs carrying sequences homologous to miR-221 seed sequence within their 3′UTRs. Pathways analysis performed on these genes revealed their prominent involvement in cell proliferation and apoptosis. Activation of E2F, MYC, NFkB, and β-catenin pathways was experimentally proven. Some of the new miR-221 target genes, including RB1, WEE1 (cell cycle inhibitors), APAF1 (pro-apoptotic), ANXA1, CTCF (transcriptional repressor), were individually validated as miR-221 targets in SNU-398, HepG2, and HEK293 cell lines. By identifying a large set of miR-221 gene targets, this study improves our knowledge about miR-221 molecular mechanisms involved in tumorigenesis. The modulation of mRNA level of 602 genes confirms the ability of miR-221 to promote cancer by affecting multiple oncogenic pathways.


Genes, Chromosomes and Cancer | 2015

Chromosome aberrations detected by conventional karyotyping using novel mitogens in chronic lymphocytic leukemia: Clinical and biologic correlations

Gian Matteo Rigolin; Ilaria Del Giudice; Luca Formigaro; Elena Saccenti; Sara Martinelli; Maurizio Cavallari; Enrico Lista; Elisa Tammiso; Eleonora Volta; Laura Lupini; Cristian Bassi; Antonella Bardi; Olga Sofritti; Giulia Daghia; Francesco Cavazzini; Marilisa Marinelli; Simona Tavolaro; Anna Guarini; Massimo Negrini; Robin Foà; Antonio Cuneo

To clarify whether karyotype aberrations (KA) involving regions not covered by the standard fluorescence in situ hybridization (FISH) panel have independent prognostic relevance, we evaluated KA by conventional cytogenetics in a learning cohort (LC; n = 166) and a validation cohort (VC; n = 250) of untreated chronic lymphocytic leukemia (CLL) patients. In the VC, novel mitogens were used to improve metaphase generation and TP53, NOTCH1, and SF3B1 mutations were assessed. KA undetected by FISH were found in 35 and 35% of the cases in the LC and VC, respectively. In addition to FISH, KA allowed reclassification of 23 and 26% of cases in the LC and VC, respectively, into a higher cytogenetic risk group. By multivariate analysis, both in the LC and VC, KA other than isolated 13q deletion correlated with a shorter time to first treatment (TFT; P < 0.001 and 0.003, respectively), while a complex karyotype predicted a worse overall survival (OS, P = 0.015 and 0.010, respectively). In the VC, where a comprehensive biologic assessment was performed, a shorter TFT was also predicted by stage (P < 0.001), IGHV mutational status (P = 0.05), and del(17p)/TP53 mutations (P = 0.033) while stage (P = 0.023) and del(17p)/TP53 mutations (P = 0.024) independently predicted a shorter OS. FISH results did not independently impact on TFT and OS, in the LC and VC cohorts; this was also the case for NOTCH1 and SF3B1 mutations in the VC. We suggest that in CLL, conventional karyotyping with novel mitogens could be more effective than FISH for the detection of KA allowing for a more precise refinement of prognosis.


BMC Cancer | 2015

Prediction of response to anti-EGFR antibody-based therapies by multigene sequencing in colorectal cancer patients

Laura Lupini; Cristian Bassi; Jitka Mlčochová; Gentian Musa; Marta Russo; Petra Vychytilova-Faltejskova; Marek Svoboda; Silvia Sabbioni; Radim Nemecek; Ondrej Slaby; Massimo Negrini

BackgroundThe anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (moAbs) cetuximab or panitumumab are administered to colorectal cancer (CRC) patients who harbor wild-type RAS proto-oncogenes. However, a percentage of patients do not respond to this treatment. In addition to mutations in the RAS genes, mutations in other genes, such as BRAF, PI3KCA, or PTEN, could be involved in the resistance to anti-EGFR moAb therapy.MethodsIn order to develop a comprehensive approach for the detection of mutations and to eventually identify other genes responsible for resistance to anti-EGFR moAbs, we investigated a panel of 21 genes by parallel sequencing on the Ion Torrent Personal Genome Machine platform. We sequenced 65 CRCs that were treated with cetuximab or panitumumab. Among these, 37 samples were responsive and 28 were resistant.ResultsWe confirmed that mutations in EGFR-pathway genes (KRAS, NRAS, BRAF, PI3KCA) were relevant for conferring resistance to therapy and could predict response (p = 0.001). After exclusion of KRAS, NRAS, BRAF and PI3KCA combined mutations could still significantly associate to resistant phenotype (p = 0.045, by Fisher exact test). In addition, mutations in FBXW7 and SMAD4 were prevalent in cases that were non-responsive to anti-EGFR moAb. After we combined the mutations of all genes (excluding KRAS), the ability to predict response to therapy improved significantly (p = 0.002, by Fisher exact test).ConclusionsThe combination of mutations at KRAS and at the five gene panel demonstrates the usefulness and feasibility of multigene sequencing to assess response to anti-EGFR moAbs. The application of parallel sequencing technology in clinical practice, in addition to its innate ability to simultaneously examine the genetic status of several cancer genes, proved to be more accurate and sensitive than the presently in use traditional approaches.


Journal of Cellular Physiology | 2015

Gene Expression Changes in Progression of Cervical Neoplasia Revealed by Microarray Analysis of Cervical Neoplastic Keratinocytes

John Charles Rotondo; Silvia Bosi; Cristian Bassi; Manuela Ferracin; Giovanni Lanza; Roberta Gafà; Eros Magri; Rita Selvatici; Stefania Torresani; Roberto Marci; Paola Garutti; Massimo Negrini; Mauro Tognon; Fernanda Martini

To evaluate the gene expression changes involved in neoplastic progression of cervical intraepithelial neoplasia. Using microarray analysis, large‐scale gene expression profile was carried out on HPV16‐CIN2, HPV16‐CIN3, and normal cervical keratinocytes derived from two HPV16‐CIN2, two HPV‐CIN3 lesions, and two corresponding normal cervical tissues, respectively. Differentially expressed genes were analyzed in normal cervical keratinocytes compared with HPV16‐CIN2 keratinocytes and in HPV16‐CIN2 keratinocytes compared with HPV16‐CIN3 keratinocytes; 37 candidate genes with continuously increasing or decreasing expression during CIN progression were identified. One of these genes, phosphoglycerate dehydrogenase, was chosen for further characterization. Quantitative reverse transcription‐polymerase chain reaction and immunohistochemical analysis confirmed that expression of phosphoglycerate dehydrogenase consistently increases during progression of CIN toward cancer. Gene expression changes occurring during CIN progression were investigated using microarray analysis, for the first time, in CIN2 and CIN3 keratinocytes naturally infected with HPV16. Phosphoglycerate dehydrogenase is likely to be associated with tumorigenesis and may be a potential prognostic marker for CIN progression. J. Cell. Physiol. 230: 806–812, 2015.


Blood | 2017

In CLL, comorbidities and the complex karyotype are associated with an inferior outcome independently of CLL-IPI

Gian Matteo Rigolin; Maurizio Cavallari; Francesca Maria Quaglia; Luca Formigaro; Enrico Lista; Antonio Urso; Carmine Liberatore; Danilo Faraci; Elena Saccenti; Cristian Bassi; Laura Lupini; Maria Antonella Bardi; Eleonora Volta; Elisa Tammiso; Aurora Melandri; Massimo Negrini; Francesco Cavazzini; Antonio Cuneo

To the editor: Chronic lymphocytic leukemia (CLL) represents the most common form of leukemia in Western countries.[1][1] The clinical course of the disease is quite heterogeneous with some patients living for years with asymptomatic disease and others experiencing early progression and requiring


Oncotarget | 2017

An extensive molecular cytogenetic characterization in high-risk chronic lymphocytic leukemia identifies karyotype aberrations and TP53 disruption as predictors of outcome and chemorefractoriness

Gian Matteo Rigolin; Luca Formigaro; Maurizio Cavallari; Francesca Maria Quaglia; Enrico Lista; Antonio Urso; Sara Martinelli; Elena Saccenti; Cristian Bassi; Laura Lupini; Maria Antonella Bardi; Eleonora Volta; Elisa Tammiso; Aurora Melandri; Massimo Negrini; Francesco Cavazzini; Antonio Cuneo

We investigated whether karyotype analysis and mutational screening by next generation sequencing could predict outcome in 101 newly diagnosed chronic lymphocytic leukemia patients with high-risk features, as defined by the presence of unmutated IGHV gene and/or 11q22/17p13 deletion by FISH and/or TP53 mutations. Cytogenetic analysis showed favorable findings (normal karyotype and isolated 13q14 deletion) in 30 patients, unfavorable (complex karyotype and/or 17p13/11q22 deletion) in 34 cases and intermediate (all other abnormalities) in 36 cases. A complex karyotype was present in 21 patients. Mutations were detected in 56 cases and were associated with unmutated IGHV status (p = 0.040) and complex karyotype (p = 0.047). TP53 disruption (i.e. TP53 mutations and/or 17p13 deletion by FISH) correlated with the presence of ≥ 2 mutations (p = 0.001) and a complex karyotype (p = 0.012). By multivariate analysis, an advanced Binet stage (p < 0.001) and an unfavorable karyotype (p = 0.001) predicted a shorter time to first treatment. TP53 disruption (p = 0.019) and the unfavorable karyotype (p = 0.028) predicted a worse overall survival. A shorter time to chemorefractoriness was associated with TP53 disruption (p = 0.001) and unfavorable karyotype (p = 0.025). Patients with both unfavorable karyotype and TP53 disruption presented a dismal outcome (median overall survival and time to chemorefractoriness of 28.7 and 15.0 months, respectively). In conclusion, karyotype analysis refines risk stratification in high-risk CLL patients and could identify a subset of patients with highly unfavorable outcome requiring alternative treatments.


Oncotarget | 2018

Circulating miR-106b-3p, miR-101-3p and miR-1246 as diagnostic biomarkers of hepatocellular carcinoma

Farzaneh Moshiri; Alessandro Salvi; Laura Gramantieri; A. Sangiovanni; Paola Guerriero; Giuseppina De Petro; Cristian Bassi; Laura Lupini; Arash Sattari; Douglas G. Cheung; Dario Veneziano; Giovanni Nigita; Ram C. Shankaraiah; Nazario Portolani; Paolo Carcoforo; Francesca Fornari; Luigi Bolondi; Antonio Frassoldati; Silvia Sabbioni; M. Colombo; Carlo M. Croce; Massimo Negrini

Hepatocellular carcinoma (HCC) is the most common liver cancer and second leading cause of cancer related death worldwide. Most HCCs occur in a damaged cirrhotic background and it may be difficult to discriminate between regenerative nodules and early HCCs. No dependable molecular biomarker exists for the early detection of HCC. MicroRNAs (miRNAs) have attracted attention as potential blood-based biomarkers. To identify circulating miRNAs with diagnostic potential in HCC, we performed preliminary RNAseq studies on plasma samples from a small set of HCC patients, cirrhotic patients and healthy controls. Then, out of the identified miRNAs, we investigated miR-101-3p, miR-106b-3p, miR-1246 and miR-411-5p in plasma of independent HCC patients’ cohorts. The use of droplet digital PCR (ddPCR) confirmed the aberrant levels of these miRNAs. The diagnostic performances of each miRNA and their combinations were measured using Receiver Operating Characteristic (ROC) curve analyses: a classifier consisting of miR-101-3p, miR-1246 and miR-106b-3p produced the best diagnostic precision in plasma of HCC vs. cirrhotic patients (AUC = 0.99). A similar performance was found when the levels of miRNAs of HCC patients were compared to healthy controls (AUC = 1.00). We extended the analyses of the same miRNAs to serum samples. In serum of HCC vs. cirrhotic patients, the combination of miR-101-3p and miR-106b-3p exhibited the best diagnostic accuracy with an AUC = 0.96. Thus, circulating miR-101-3p, miR-106b-3p and miR-1246, either individually or in combination, exhibit a considerable potential value as diagnostic biomarkers of HCC.

Collaboration


Dive into the Cristian Bassi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge