Cristian Bonato
Leiden University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cristian Bonato.
Physical Review Letters | 2010
Cristian Bonato; Florian Haupt; S. S. R. Oemrawsingh; Jan Gudat; Dapend Ding; Martin P. van Exter; Dirk Bouwmeester
We propose an interface between the spin of a photon and the spin of an electron confined in a quantum dot embedded in a microcavity operating in the weak-coupling regime. This interface, based on spin selective photon reflection from the cavity, can be used to construct a CNOT gate, a multiphoton entangler and a photonic Bell-state analyzer. Finally, we analyze experimental feasibility, concluding that the schemes can be implemented with current technology.
New Journal of Physics | 2008
Paolo Villoresi; Thomas Jennewein; Fabrizio Tamburini; Markus Aspelmeyer; Cristian Bonato; Rupert Ursin; Claudio Pernechele; V. Luceri; G. Bianco; Anton Zeilinger; Cesare Barbieri
Extending quantum communication to space environments would enable us to perform fundamental experiments on quantum physics as well as applications of quantum information at planetary and interplanetary scales. Here, we report on the first experimental study of the conditions for the implementation of the single-photon exchange between a satellite and an Earth-based station. We built an experiment that mimics a single photon source on a satellite, exploiting the telescope at the Matera Laser Ranging Observatory of the Italian Space Agency to detect the transmitted photons. Weak laser pulses, emitted by the ground-based station, are directed toward a satellite equipped with cube-corner retroreflectors. These reflect a small portion of the pulse, with an average of less- than-one photon per pulse directed to our receiver, as required for faint-pulse
New Journal of Physics | 2009
Cristian Bonato; Andrea Tomaello; V. Da Deppo; Giampiero Naletto; Paolo Villoresi
In this paper, we present a novel analysis of the feasibility of quantum key distribution between a LEO satellite and a ground station. First of all, we study signal propagation through a turbulent atmosphere for uplinks and downlinks, discussing the contribution of beam spreading and beam wandering. Then we introduce a model for the background noise of the channel during night-time and day-time, calculating the signal-to-noise ratio for different configurations. We also discuss the expected error-rate due to imperfect polarization compensation in the channel. Finally, we calculate the expected key generation rate of a secure key for different configurations (uplink, downlink) and for different protocols (BB84 with and without decoy states, entanglement-based Ekert91 protocol).
Optics Express | 2006
Cristian Bonato; Markus Aspelmeyer; Thomas Jennewein; Claudio Pernechele; Paolo Villoresi; Anton Zeilinger
In a Space quantum-cryptography experiment a satellite pointing system is needed to send single photons emitted by the source on the satellite to the polarization analysis apparatus on Earth. In this paper a simulation is presented regarding how the satellite pointing systems affect the polarization state of the single photons, to help designing a proper compensation system.
Physical Review Letters | 2008
Cristian Bonato; Alexander V. Sergienko; Bahaa E. A. Saleh; Stefano Bonora; Paolo Villoresi
We report the first experimental demonstration of even-order aberration cancellation in quantum interferometry. The effect is a spatial counterpart of the spectral group velocity dispersion cancellation, which is associated with spectral entanglement. It is manifested in temporal interferometry by virtue of the multiparameter spatial-spectral entanglement. Spatially entangled photons, generated by spontaneous parametric down-conversion, were subjected to spatial aberrations introduced by a deformable mirror that modulates the wave front. We show that only odd-order spatial aberrations affect the quality of quantum interference.
Physical Review Letters | 2008
Olga Minaeva; Cristian Bonato; Bahaa E. A. Saleh; David S. Simon; Alexander V. Sergienko
We describe a novel effect involving odd-order dispersion cancellation. We demonstrate that odd- and even-order dispersion cancellation may be obtained in different regions of a single quantum interferogram using frequency-anticorrelated entangled photons and a new type of quantum interferometer. This offers new opportunities for quantum communication and metrology in dispersive media.
Nature Nanotechnology | 2016
Cristian Bonato; Machiel Blok; Hossein T. Dinani; Dominic W. Berry; Matthew Markham; Daniel Twitchen; R. Hanson
Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz(-1/2) over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.
Applied Physics Letters | 2009
Cristian Bonato; Dapeng Ding; Jan Gudat; Susanna M. Thon; Hyochul Kim; P. M. Petroff; Martin P. van Exter; Dirk Bouwmeester
We demonstrate a technique to tune the optical properties of micropillar cavities by creating small defects on the sample surface near the cavity region with an intense focused laser beam. Such defects modify strain in the structure, changing the birefringence in a controllable way. We apply the technique to make the fundamental cavity mode polarization-degenerate and to fine tune the overall mode frequencies, as needed for applications in quantum information science.
Physical Review B | 2011
Cristian Bonato; Evert van Nieuwenburg; Jan Gudat; Susanna M. Thon; Hyochul Kim; Martin P. van Exter; Dirk Bouwmeester
We discuss the fine-tuning of the optical properties of self-assembled quantum dots by the strain perturbation introduced by laser-induced surface defects. We show experimentally that the quantum dot transition red-shifts, independently of the actual position of the defect, and that such frequency shift is about a factor five larger than the corresponding shift of a micropillar cavity mode resonance. We present a simple model that accounts for these experimental findings.
Optics Express | 2012
Jenna Hagemeier; Cristian Bonato; Tuan Anh Truong; Hyochul Kim; Gareth Beirne; Morten P. Bakker; Martin P. van Exter; Yunqiu Luo; P. M. Petroff; Dirk Bouwmeester
Hybrid quantum information protocols are based on local qubits, such as trapped atoms, NV centers, and quantum dots, coupled to photons. The coupling is achieved through optical cavities. Here we demonstrate far-field optimized H1 photonic crystal membrane cavities combined with an additional back reflection mirror below the membrane that meet the optical requirements for implementing hybrid quantum information protocols. Using numerical optimization we find that 80% of the light can be radiated within an objective numerical aperture of 0.8, and the coupling to a single-mode fiber can be as high as 92%. We experimentally prove the unique external mode matching properties by resonant reflection spectroscopy with a cavity mode visibility above 50%.