Cristina C. Barrias
University of Porto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cristina C. Barrias.
Acta Biomaterialia | 2014
Sílvia J. Bidarra; Cristina C. Barrias; Pedro L. Granja
Alginate hydrogels are extremely versatile and adaptable biomaterials, with great potential for use in biomedical applications. Their extracellular matrix-like features have been key factors for their choice as vehicles for cell delivery strategies aimed at tissue regeneration. A variety of strategies to decorate them with biofunctional moieties and to modulate their biophysical properties have been developed recently, which further allow their tailoring to the desired application. Additionally, their potential use as injectable materials offers several advantages over preformed scaffold-based approaches, namely: easy incorporation of therapeutic agents, such as cells, under mild conditions; minimally invasive local delivery; and high contourability, which is essential for filling in irregular defects. Alginate hydrogels have already been explored as cell delivery systems to enhance regeneration in different tissues and organs. Here, the in vitro and in vivo potential of injectable alginate hydrogels to deliver cells in a targeted fashion is reviewed. In each example, the selected crosslinking approach, the cell type, the target tissue and the main findings of the study are highlighted.
Biomaterials | 2009
Cristina C. Barrias; M. Cristina L. Martins; Graça Almeida-Porada; Mário A. Barbosa; Pedro L. Granja
The objective of this study was to compare the biological effects of two key cell-adhesive proteins, fibronectin (FN) and vitronectin (VN), upon adsorption onto molecularly-designed model surfaces. Single-component and mixed self-assembled monolayers (SAMs) of alkanethiols on gold with OH and CH(3) terminal groups were prepared at 100%, 65%, 36% and 0% of OH at the surface, to generate a range of surfaces with a simple chemistry and a wettability gradient. FN and VN were adsorbed under non-competitive (single-protein solutions) and competitive (multi-protein solutions) conditions, and compared at different levels: adsorbed amount (radiolabelling), elution, functional presentation of cell-binding domains (ELISA), and role in mediating cell adhesion (antibody-based assay). The observed trends were related to mesenchymal stem cell response in terms of adhesion and overall cell morphology. Under non-competitive conditions, adsorption of both proteins increased with surface hydrophobicity. The presence of competitive proteins significantly decreased the adsorbed amounts, although both proteins were still detected in all SAMs. Adsorption of FN followed a trend similar to that of non-competitive conditions, while adsorption of VN was higher on 100%OH-SAMs. Concerning elution, retention of adsorbed VN was always higher than that of FN. For both proteins, functional presentation of cell-binding domains was more effective on the more hydrophilic 100%OH-SAMs. This fact, coupled to the ability of this type of SAMs to selectively recruit and retain VN in the presence of competitive serum proteins, seems to correlate with the better cell response observed on these surfaces, as compared with hydrophobic 0%OH(100%CH(3))-SAMs.
Nanomedicine: Nanotechnology, Biology and Medicine | 2013
Rúben Pereira; Cristina C. Barrias; Pedro L. Granja; Paulo J. Bártolo
Skin is the largest organ of human body, acting as a barrier with protective, immunologic and sensorial functions. Its permanent exposure to the external environment can result in different kinds of damage with loss of variable volumes of extracellular matrix. For the treatment of skin lesions, several strategies are currently available, such as the application of autografts, allografts, wound dressings and tissue-engineered substitutes. Although proven clinically effective, these strategies are still characterized by key limitations such as patient morbidity, inadequate vascularization, low adherence to the wound bed, the inability to reproduce skin appendages and high manufacturing costs. Advanced strategies based on both bottom-up and top-down approaches offer an effective, permanent and viable alternative to solve the abovementioned drawbacks by combining biomaterials, cells, growth factors and advanced biomanufacturing techniques. This review details recent advances in skin regeneration and repair strategies, and describes their major advantages and limitations. Future prospects for skin regeneration are also outlined.
Biomacromolecules | 2010
Sílvia J. Bidarra; Cristina C. Barrias; Mário A. Barbosa; Raquel Soares; Pedro L. Granja
In this work, human mesenchymal stem cells (hMSC) immobilized in RGD-coupled alginate microspheres, with a binary composition of high and low molecular weight alginate, were investigated. Cells immobilized within RGD-alginate microspheres (during 21 days) showed metabolic activity, with an overall viability higher than 90%, short cell extensions, and, when induced, they were able to differentiate into the osteogenic lineage. In osteogenic conditions (comparing to basal conditions), immobilized cells presented alkaline phosphatase (ALP) activity and an upregulation of ALP, collagen type I, and Runx 2 expression. Moreover, mineralization was also detected in immobilized cells under osteogenic stimulus. In addition, it was demonstrated for the first time that MSCs immobilized in this 3D matrix were able to enhance the ability of neighboring endothelial cells to form tubelike structures. Overall, these findings represent a step forward in the development of injectable stem cell carriers for bone tissue engineering.
Acta Biomaterialia | 2011
Keila B. Fonseca; Sílvia J. Bidarra; Maria José Oliveira; Pedro L. Granja; Cristina C. Barrias
The development of sophisticated three-dimensional (3-D) cell culture microenvironments that recreate some of the complexity of the natural extracellular matrix (ECM) remains a challenging task. Here, the modification of alginate through partial crosslinking with a matrix metalloproteinase (MMP) cleavable peptide (proline-valine-glycine-leucine-isoleucine-glycine, PVGLIG) is described, and its use in the preparation of injectable, in situ crosslinkable hydrogel-like matrices is proposed. PVGLIG-grafted alginates were synthesized by carbodiimide chemistry and characterized. Their biological performance was evaluated by comparing the response of 3-D cultured mesenchymal stem cells (MSCs) to alginate hydrogels containing only cell-adhesion peptides (RGD-alginate) or both peptides (PVGLIG/RGD-alginate). After 1 week, cells remained essentially round within RGD-alginate, while they exhibited an elongated morphology within PVGLIG/RGD-alginate hydrogels, forming cellular networks. This suggests that cells were able to structurally reorganize the matrix, through enzymatic hydrolysis of PVGLIG residues, overcoming biophysical hydrogel resistance. As shown by gelatine-zymography, MSC presented higher activity of MMP-2 when cultured within alginate functionalized with MMP-sensitive peptide, suggesting that the cells proteolytic phenotype was modulated by the matrix composition. Additionally, PVGLIG/RGD-alginate hydrogels were clearly degraded in cell culture. Taken together, the results demonstrate that the co-incorporation of MMP-labile peptides in cell-adhesive RGD-alginate hydrogels improved their performance as ECM analogues, providing a more dynamic and physiological 3-D cellular microenvironment.
Stem Cell Research | 2011
Sílvia J. Bidarra; Cristina C. Barrias; Mário A. Barbosa; Raquel Soares; Joëlle Amédée; Pedro L. Granja
The purpose of this work was to investigate if a coculture system of human mesenchymal stem cells (hMSC) with endothelial cells (human umbilical vein endothelial cells, HUVEC) could modulate the phenotype and proliferation of harvested MSCs. In addition to previous investigations on the crosstalk between these two cell types, in the present work different relative cell ratios were analyzed for long, therapeutically relevant, culture periods. Moreover, MSCs osteogenic commitment was assessed in a non-osteogenic medium and in the presence of HUVECs through magnetic cell separation, cell quantification by flow cytometry, morphology by fluorescent microscopy, metabolic activity and gene expression of osteogenic markers. Collectively, the present findings demonstrate that, by coculturing MSCs with HUVECs, there was not only the promotion of osteogenic differentiation (and its enhancement, depending on the relative cell ratios used), but also a significant increase on MSCs proliferation. This augmentation in cell proliferation occurred independently of relative cell ratios, but was favored by higher relative amounts of HUVECs. Taken together, this data suggests that HUVECs not only modulate MSC phenotype but also their proliferation rate. Therefore, a coculture system of MSCs and HUVECs can a have a broad impact on bone tissue engineering approaches.
Acta Biomaterialia | 2013
F. Raquel Maia; Sílvia J. Bidarra; Pedro L. Granja; Cristina C. Barrias
Human mesenchymal stem cells (MSCs) are currently recognized as a powerful cell source for regenerative medicine, notably for their capacity to differentiate into multiple cell types. The combination of MSCs with biomaterials functionalized with instructive cues can be used as a strategy to direct specific lineage commitment, and can thus improve the therapeutic efficacy of these cells. In terms of biomaterial design, one common approach is the functionalization of materials with ligands capable of directly binding to cell receptors and trigger specific differentiation signaling pathways. Other strategies focus on the use of moieties that have an indirect effect, acting, for example, as sequesters of bioactive ligands present in the extracellular milieu that, in turn, will interact with cells. Compared with complex biomolecules, the use of simple compounds, such as chemical moieties and peptides, and other small molecules can be advantageous by leading to less expensive and easily tunable biomaterial formulations. This review describes different strategies that have been used to promote substrate-mediated guidance of osteogenic differentiation of immature osteoblasts, osteoprogenitors and MSCs, through chemically conjugated small moieties, both in two- and three-dimensional set-ups. In each case, the selected moiety, the coupling strategy and the main findings of the study were highlighted. The latest advances and future perspectives in the field are also discussed.
Biomacromolecules | 2014
Keila B. Fonseca; David B. Gomes; Kangwon Lee; Susana G. Santos; Aureliana Sousa; Eduardo A. Silva; David J. Mooney; Pedro L. Granja; Cristina C. Barrias
Hydrogels with the potential to provide minimally invasive cell delivery represent a powerful tool for tissue-regeneration therapies. In this context, entrapped cells should be able to escape the matrix becoming more available to actively participate in the healing process. Here, we analyzed the performance of proteolytically degradable alginate hydrogels as vehicles for human mesenchymal stem cells (hMSC) transplantation. Alginate was modified with the matrix metalloproteinase (MMP)-sensitive peptide Pro-Val-Gly-Leu-Iso-Gly (PVGLIG), which did not promote dendritic cell maturation in vitro, neither free nor conjugated to alginate chains, indicating low immunogenicity. hMSC were entrapped within MMP-sensitive and MMP-insensitive alginate hydrogels, both containing cell-adhesion RGD peptides. Softer (2 wt % alginate) and stiffer (4 wt % alginate) matrices were tested. When embedded in a Matrigel layer, hMSC-laden MMP-sensitive alginate hydrogels promoted more extensive outward cell migration and invasion into the tissue mimic. In vivo, after 4 weeks of subcutaneous implantation in a xenograft mouse model, hMSC-laden MMP-sensitive alginate hydrogels showed higher degradation and host tissue invasion than their MMP-insensitive equivalents. In both cases, softer matrices degraded faster than stiffer ones. The transplanted hMSC were able to produce their own collagenous extracellular matrix, and were located not only inside the hydrogels, but also outside, integrated in the host tissue. In summary, injectable MMP-sensitive alginate hydrogels can act as localized depots of cells and confer protection to transplanted cells while facilitating tissue regeneration.
Journal of Biomedical Materials Research Part B | 2008
Serafim M. Oliveira; Cristina C. Barrias; Isabel Almeida; Paulo C. Costa; Maria R. Pena Ferreira; Maria Fernanda Bahia; Mário A. Barbosa
The aim of this study was to test the injectability of a bone filler system based on the combination of ceramic microspheres with a gel-like vehicle, for noninvasive surgery. Porous hydroxyapatite microspheres with a uniform size and an average diameter of 535 +/- 38 mum were prepared, and their compression strength and friability were tested. The sodium-alginate solution with a concentration of 7.25% (w/v) was used as the vehicle. To promote its in situ gelation, calcium carbonate and D-gluconic-delta-lactone were added to the solution. Microspheres were mixed with the vehicle at different percentages (20-40 wt %). Gelation times in the range of 8-20 min, were obtained, depending on the formulation. Mixtures of HAp microspheres with alginate solution at 7.25% originating a gel in 11 min present an adequate handling time to perform an injection. Their injectability was evaluated using an injection device commonly employed in vertebroplasty surgical procedures, coupled to a texturometer in compression mode. Using an extrusion rate of 0.1 mm/s, the force required to extrude any of the mixtures tested was lower than 100 N. For an extrusion rate of 1 mm/s mixtures with 40 wt % of microspheres were very difficult to inject. Mixtures with 35 wt % of microspheres presented the best compromise between injectability and compression strength of the gelled system. MicroCT analysis revealed a homogeneous distribution of the microspheres inside the vehicle, as well as full interconnection of the intra-microspheres spaces. The compression strength for the gelled systems ranged from 80 kPa (gel itself) to 600 kPa (composite with 40 wt % of microspheres).
Pharmacology & Therapeutics | 2016
João Pedro Poças Martins; Patrick J. Kennedy; Hélder A. Santos; Cristina C. Barrias; Bruno Sarmento
Advances in the understanding of neonatal Fc receptor (FcRn) biology and function have demonstrated that this receptor, primarily identified for the transfer of passive immunity from mother infant, is involved in several biological and immunological processes. In fact, FcRn is responsible for the long half-life of IgG and albumin in the serum, by creating an intracellular protein reservoir, which is protected from lysosomal degradation and, importantly, trafficked across the cell. Such discovery has led researchers to hypothesize the role for this unique receptor in the controlled delivery of therapeutic agents. A great amount of FcRn-based strategies are already under extensive investigation, in which FcRn reveals to have profound impact on the biodistribution and half-life extension of therapeutic agents. This review summarizes the main findings on FcRn biology, function and distribution throughout different tissues, together with the main advances on the FcRn-based therapeutic opportunities and model systems, which indicate that this receptor is a potential target for therapeutic regimen modification.