Sílvia J. Bidarra
University of Porto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sílvia J. Bidarra.
Biomaterials | 2009
Maritie Grellier; Pedro L. Granja; Jean-Christophe Fricain; Sílvia J. Bidarra; Martine Renard; Reine Bareille; Chantal Bourget; Joëlle Amédée; Mário A. Barbosa
Bone regeneration seems to be dependant on cell communication between osteogenic and endothelial cells arising from surrounding blood vessels. This study aims to determine whether endothelial cells can regulate the osteogenic potential of osteoprogenitor cells in vitro and in vivo, in a long bone defect, when co-immobilized in alginate microspheres. Alginate is a natural polymer widely used as a biomaterial for cell encapsulation. Human osteoprogenitors (HOP) from bone marrow mesenchymal stem cells were immobilized alone or together with human umbilical vein endothelial cells (HUVEC) inside irradiated, oxidized and RGD-grafted alginate microspheres. Immobilized cells were cultured in dynamic conditions and cell metabolic activity increased during three weeks. The gene expression of alkaline phosphatase and osteocalcin, both specific markers of the osteoblastic phenotype, and mineralization deposits were upregulated in co-immobilized HOPs and HUVECs, comparing to the immobilization of monocultures. VEGF secretion was also increased when HOPs were co-immobilized with HUVECs. Microspheres containing co-cultures were further implanted in a bone defect and bone formation was analysed by muCT and histology at 3 and 6 weeks post-implantation. Mineralization was observed inside and around the implanted microspheres containing the immobilized cells. However, when HOPs were co-immobilized with HUVECs, mineralization significantly increased. These findings demonstrate that co-immobilization of osteogenic and endothelial cells within RGD-grafted alginate microspheres provides a promising strategy for bone tissue engineering.
Acta Biomaterialia | 2014
Sílvia J. Bidarra; Cristina C. Barrias; Pedro L. Granja
Alginate hydrogels are extremely versatile and adaptable biomaterials, with great potential for use in biomedical applications. Their extracellular matrix-like features have been key factors for their choice as vehicles for cell delivery strategies aimed at tissue regeneration. A variety of strategies to decorate them with biofunctional moieties and to modulate their biophysical properties have been developed recently, which further allow their tailoring to the desired application. Additionally, their potential use as injectable materials offers several advantages over preformed scaffold-based approaches, namely: easy incorporation of therapeutic agents, such as cells, under mild conditions; minimally invasive local delivery; and high contourability, which is essential for filling in irregular defects. Alginate hydrogels have already been explored as cell delivery systems to enhance regeneration in different tissues and organs. Here, the in vitro and in vivo potential of injectable alginate hydrogels to deliver cells in a targeted fashion is reviewed. In each example, the selected crosslinking approach, the cell type, the target tissue and the main findings of the study are highlighted.
Biomacromolecules | 2010
Sílvia J. Bidarra; Cristina C. Barrias; Mário A. Barbosa; Raquel Soares; Pedro L. Granja
In this work, human mesenchymal stem cells (hMSC) immobilized in RGD-coupled alginate microspheres, with a binary composition of high and low molecular weight alginate, were investigated. Cells immobilized within RGD-alginate microspheres (during 21 days) showed metabolic activity, with an overall viability higher than 90%, short cell extensions, and, when induced, they were able to differentiate into the osteogenic lineage. In osteogenic conditions (comparing to basal conditions), immobilized cells presented alkaline phosphatase (ALP) activity and an upregulation of ALP, collagen type I, and Runx 2 expression. Moreover, mineralization was also detected in immobilized cells under osteogenic stimulus. In addition, it was demonstrated for the first time that MSCs immobilized in this 3D matrix were able to enhance the ability of neighboring endothelial cells to form tubelike structures. Overall, these findings represent a step forward in the development of injectable stem cell carriers for bone tissue engineering.
Acta Biomaterialia | 2011
Keila B. Fonseca; Sílvia J. Bidarra; Maria José Oliveira; Pedro L. Granja; Cristina C. Barrias
The development of sophisticated three-dimensional (3-D) cell culture microenvironments that recreate some of the complexity of the natural extracellular matrix (ECM) remains a challenging task. Here, the modification of alginate through partial crosslinking with a matrix metalloproteinase (MMP) cleavable peptide (proline-valine-glycine-leucine-isoleucine-glycine, PVGLIG) is described, and its use in the preparation of injectable, in situ crosslinkable hydrogel-like matrices is proposed. PVGLIG-grafted alginates were synthesized by carbodiimide chemistry and characterized. Their biological performance was evaluated by comparing the response of 3-D cultured mesenchymal stem cells (MSCs) to alginate hydrogels containing only cell-adhesion peptides (RGD-alginate) or both peptides (PVGLIG/RGD-alginate). After 1 week, cells remained essentially round within RGD-alginate, while they exhibited an elongated morphology within PVGLIG/RGD-alginate hydrogels, forming cellular networks. This suggests that cells were able to structurally reorganize the matrix, through enzymatic hydrolysis of PVGLIG residues, overcoming biophysical hydrogel resistance. As shown by gelatine-zymography, MSC presented higher activity of MMP-2 when cultured within alginate functionalized with MMP-sensitive peptide, suggesting that the cells proteolytic phenotype was modulated by the matrix composition. Additionally, PVGLIG/RGD-alginate hydrogels were clearly degraded in cell culture. Taken together, the results demonstrate that the co-incorporation of MMP-labile peptides in cell-adhesive RGD-alginate hydrogels improved their performance as ECM analogues, providing a more dynamic and physiological 3-D cellular microenvironment.
Stem Cell Research | 2011
Sílvia J. Bidarra; Cristina C. Barrias; Mário A. Barbosa; Raquel Soares; Joëlle Amédée; Pedro L. Granja
The purpose of this work was to investigate if a coculture system of human mesenchymal stem cells (hMSC) with endothelial cells (human umbilical vein endothelial cells, HUVEC) could modulate the phenotype and proliferation of harvested MSCs. In addition to previous investigations on the crosstalk between these two cell types, in the present work different relative cell ratios were analyzed for long, therapeutically relevant, culture periods. Moreover, MSCs osteogenic commitment was assessed in a non-osteogenic medium and in the presence of HUVECs through magnetic cell separation, cell quantification by flow cytometry, morphology by fluorescent microscopy, metabolic activity and gene expression of osteogenic markers. Collectively, the present findings demonstrate that, by coculturing MSCs with HUVECs, there was not only the promotion of osteogenic differentiation (and its enhancement, depending on the relative cell ratios used), but also a significant increase on MSCs proliferation. This augmentation in cell proliferation occurred independently of relative cell ratios, but was favored by higher relative amounts of HUVECs. Taken together, this data suggests that HUVECs not only modulate MSC phenotype but also their proliferation rate. Therefore, a coculture system of MSCs and HUVECs can a have a broad impact on bone tissue engineering approaches.
Acta Biomaterialia | 2013
F. Raquel Maia; Sílvia J. Bidarra; Pedro L. Granja; Cristina C. Barrias
Human mesenchymal stem cells (MSCs) are currently recognized as a powerful cell source for regenerative medicine, notably for their capacity to differentiate into multiple cell types. The combination of MSCs with biomaterials functionalized with instructive cues can be used as a strategy to direct specific lineage commitment, and can thus improve the therapeutic efficacy of these cells. In terms of biomaterial design, one common approach is the functionalization of materials with ligands capable of directly binding to cell receptors and trigger specific differentiation signaling pathways. Other strategies focus on the use of moieties that have an indirect effect, acting, for example, as sequesters of bioactive ligands present in the extracellular milieu that, in turn, will interact with cells. Compared with complex biomolecules, the use of simple compounds, such as chemical moieties and peptides, and other small molecules can be advantageous by leading to less expensive and easily tunable biomaterial formulations. This review describes different strategies that have been used to promote substrate-mediated guidance of osteogenic differentiation of immature osteoblasts, osteoprogenitors and MSCs, through chemically conjugated small moieties, both in two- and three-dimensional set-ups. In each case, the selected moiety, the coupling strategy and the main findings of the study were highlighted. The latest advances and future perspectives in the field are also discussed.
Journal of Materials Chemistry B | 2015
Sara C. Neves; David B. Gomes; Aureliana Sousa; Sílvia J. Bidarra; P. Petrini; Lorenzo Moroni; Cristina C. Barrias; Pedro L. Granja
In situ-forming hydrogels of pectin, a polysaccharide present in the cell wall of higher plants, were prepared using an internal ionotropic gelation strategy based on calcium carbonate/d-glucono-δ-lactone, and explored for the first time as cell delivery vehicles. Since no ultrapure pectins are commercially available yet, a simple and efficient purification method was established, effectively reducing the levels of proteins, polyphenols and endotoxins of the raw pectin. The purified pectin was then functionalized by carbodiimide chemistry with a cell-adhesive peptide (RGD). Its gelation was analyzed by rheometry and optimized. Human mesenchymal stem cells embedded within unmodified and RGD-pectin hydrogels of different viscoelasticities (1.5 and 2.5 wt%) remained viable and metabolically active for up to 14 days. On unmodified pectin hydrogels, cells remained isolated and round-shaped. In contrast, within RGD-pectin hydrogels they elongated, spread, established cell-to-cell contacts, produced extracellular matrix, and migrated outwards the hydrogels. After 7 days of subcutaneous implantation in mice, acellular pectin hydrogels were considerably degraded, particularly the 1.5 wt% hydrogels. Altogether, these findings show the great potential of pectin-based hydrogels, which combine an interesting set of easily tunable properties, including the in vivo degradation profile, for tissue engineering and regenerative medicine.
Archive | 2018
Sílvia J. Bidarra; Cristina C. Barrias
Three-dimensional (3D) cell culture systems have gained increasing interest among the scientific community, as they are more biologically relevant than traditional two-dimensional (2D) monolayer cultures. Alginate hydrogels can be formed under cytocompatibility conditions, being among the most widely used cell-entrapment 3D matrices. They recapitulate key structural features of the natural extracellular matrix and can be bio-functionalized with bioactive moieties, such as peptides, to specifically modulate cell behavior. Moreover, alginate viscoelastic properties can be tuned to match those of different types of native tissues. Ionic alginate hydrogels are transparent, allowing routine monitoring of entrapped cells, and crosslinking can be reverted using chelating agents for easy cell recovery. In this chapter, we describe some key steps to establish and characterize 3D cultures of mesenchymal stem cells using alginate hydrogels.
Biomaterials | 2011
Sílvia J. Bidarra; Cristina C. Barrias; Keila B. Fonseca; Mário A. Barbosa; Raquel Soares; Pedro L. Granja
Biomaterials | 2018
A.L. Torres; Sílvia J. Bidarra; Marta Pinto; P.C. Aguiar; Eduardo A. Silva; Cristina C. Barrias