Cullen R. Buie
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cullen R. Buie.
Applied Physics Letters | 2013
Kuang-Han Chu; Young Soo Joung; Ryan Enright; Cullen R. Buie; Evelyn N. Wang
We report large enhancements in critical heat flux (CHF) on hierarchically structured surfaces, fabricated using electrophoretic deposition of silica nanoparticles on microstructured silicon and electroplated copper microstructures covered with copper oxide (CuO) nanostructures. A critical heat flux of ≈250 W/cm2 was achieved on a CuO hierarchical surface with a roughness factor of 13.3, and good agreement between the model proposed in our recent study and the current data was found. These results highlight the important role of roughness using structures at multiple length scales for CHF enhancement. This high heat removal capability promises an opportunity for high flux thermal management.
Nature Communications | 2013
William A. Braff; Martin Z. Bazant; Cullen R. Buie
In order for the widely discussed benefits of flow batteries for electrochemical energy storage to be applied at large scale, the cost of the electrochemical stack must come down substantially. One promising avenue for reducing stack cost is to increase the system power density while maintaining efficiency, enabling smaller stacks. Here we report on a membrane-less hydrogen bromine laminar flow battery as a potential high-power density solution. The membrane-less design enables power densities of 0.795 W cm(-2) at room temperature and atmospheric pressure, with a round-trip voltage efficiency of 92% at 25% of peak power. Theoretical solutions are also presented to guide the design of future laminar flow batteries. The high-power density achieved by the hydrogen bromine laminar flow battery, along with the potential for rechargeable operation, will translate into smaller, inexpensive systems that could revolutionize the fields of large-scale energy storage and portable power systems.
Journal of The Electrochemical Society | 2007
Shawn Litster; Cullen R. Buie; Tibor Fabian; John K. Eaton; Juan G. Santiago
Proton exchange membrane (PEM) fuel cells require humidified gases to maintain proper membrane humidification, but this often results in a problematic accumulation of liquid water. Typically, excessive air flow rates and serpentine channel designs are used to mitigate flooding at the cost of system efficiency. In this paper, we present an active water management system that decouples water removal from oxidant delivery. The system uses a porous carbon flow field plate as an integrated wick that can passively redistribute water within the fuel cell. The system also employs an external electro-osmotic (EO) pump that actively removes excess water from the channels and gas diffusion layer. For a 25 cm 2 fuel cell with 23 parallel air channels, we demonstrate a 60% increase in maximum power density over a standard graphite plate with a low air stoichiometry of 1.3. EO pumping represents a negligible parasitic load, consuming typically less than 0.5% of the fuel cell power. Experimental and modeling results show that simple passive water transport through the porous carbon alone can prevent flooding at certain operating conditions and flow field dimensions. However, active water management with EO pumping facilitates robust operation with a high volumetric power density across all operating conditions.
Lab on a Chip | 2012
William A. Braff; Alexandre Pignier; Cullen R. Buie
Insulator-based dielectrophoresis (iDEP) is a very promising technique for sorting microparticles based on their electrical properties. The need for microfabricated electrode arrays is eliminated by using constrictions in a microchannel to induce large electric field gradients. In this work, micro-milling is used to build devices with three-dimensional features that exhibit very large constriction ratios. These three-dimensional insulator-based dielectrophoresis (3DiDEP) devices allow for trapping microparticles at average electric fields one order of magnitude lower than two-dimensional designs with the same footprint. Low voltage operation minimizes Joule heating effects that have limited previous systems, opening up the possibility for new biological applications of iDEP.
Langmuir | 2011
Young Soo Joung; Cullen R. Buie
A novel method to fabricate superhydrophobic surfaces using electrophoretic deposition (EPD) is presented. EPD presents a readily scalable, customizable, and potentially low cost surface manufacturing process. Low surface energy materials with high surface roughness are achieved using EPD of unstable hydrophobic SiO(2) particle suspensions. The effect of suspension stability on surface roughness is quantitatively explored with optical absorbance measurements (to determine suspension stability) and atomic force microscopy (to measure surface roughness). Varying suspension pH modulates suspension stability. Contrary to most applications of EPD, we show that superhydrophobic surfaces favor mildly unstable suspensions since they result in high surface roughness. Particle agglomerates formed in unstable suspensions lead to highly irregular films after EPD. After only 1 min of EPD, we obtain surfaces with low contact angle hysteresis and static contact angles exceeding 160°. We also present a technique to enhance the mechanical durability of the superhydrophobic surfaces by adding a polymeric binder to the suspension prior to EPD.
Nature Communications | 2015
Young Soo Joung; Cullen R. Buie
Aerosols are investigated because of their significant impact on the environment and human health. To date, windblown dust and sea salt from sea spray through bursting bubbles have been considered the chief mechanisms of environmental aerosol dispersion. Here we investigate aerosol generation from droplets hitting wettable porous surfaces including various classifications of soil. We demonstrate that droplets can release aerosols when they influence porous surfaces, and these aerosols can deliver elements of the porous medium to the environment. Experiments on various porous media including soil and engineering materials reveal that knowledge of the surface properties and impact conditions can be used to predict when frenzied aerosol generation will occur. This study highlights new phenomena associated with droplets on porous media that could have implications for the investigation of aerosol generation in the environment.
PLOS ONE | 2013
William A. Braff; Dana Willner; Philip Hugenholtz; Korneel Rabaey; Cullen R. Buie
Insulator-based dielectrophoresis can be used to manipulate biological particles, but has thus far found limited practical applications due to low sensitivity. We present linear sweep three-dimensional insulator-based dielectrophoresis as a considerably more sensitive approach for strain-level discrimination bacteria. In this work, linear sweep three-dimensional insulator-based dielectrophoresis was performed on Pseudomonas aeruginosa PA14 along with six isogenic mutants as well as Streptococcus mitis SF100 and PS344. Strain-level discrimination was achieved between these clinically important pathogens with applied electric fields below 10 V/mm. This low voltage, high sensitivity technique has potential applications in clinical diagnostics as well as microbial physiology research.
Electrochemical and Solid State Letters | 2007
Cullen R. Buie; Daejoong Kim; Shawn Litster; Juan G. Santiago
This work reports on the design and performance evaluation of a miniature direct methanol fuel cell(DMFC)integrated with an electro_osmotic(EO)pump for methanol delivery.Electro-osmotic pumps require minimal parasitic power while boasting no moving parts and simple fuel cell integration.Here ,aneletro-osmotic pump is realized from a commercially available porous glass frit.We characterize a custom-fabricated DMFC with a free convection cathode and coupled to an extennal electro-osmotic pump operated at applied potentials of 4.0,7.0,and 10V.Maximum gross power density of our free convection DMFC(operated at 50°)is 55 mW/cm2 using 4.0 mol/L concentration methanol solution supplied by the EO pump.Experimental results show that electro-osmotic pumps can deliver 2.0,4.0 and 8.0mol/L methanol/water mixtures to DMFCs while utilizing ~5.0% of the fuel cell power.Furthermore ,we discuss pertinent design considerations when using electro-osmotic pumps with DMFCs and areas of further study.
ACS Applied Materials & Interfaces | 2015
Young Soo Joung; Cullen R. Buie
This work describes a nanoparticle coating method to produce durable antiwetting polyester fabric. Electrophoretic deposition is used for fast modification of polyester fabric with silica nanoparticles embedded in polymeric networks for high durability coatings. Typically, electrophoretic deposition (EPD) is utilized on electrically conductive substrates due to its dependence on an applied electrical field. EPD on nonconductive materials has been attempted but are limited by weak adhesion, cracks, and other irregularities. To resolve these issues, we coat polyester fabric with thin polymer layers using electrostatic self-assembly (layer-by-layer self-assembly). Next, silica nanoparticles are uniformly dispersed on the polymer layers. Finally, polymerically stabilized silica nanoparticles are deposited by EPD on the fabric, followed by heat treatment. The modified fabric shows high static contact angle and low contact angle hysteresis, while keeping its original color, flexibility, and air permeability. During a skin fiction resistance test, the hydrophobicity of the coating layer was maintained over 500 h. Furthermore, we also show that this approach facilitates patterned regions of wettability by modifying the electric field in EPD.
Nature Communications | 2017
Young Soo Joung; Zhifei Ge; Cullen R. Buie
Aerosolized microorganisms may play an important role in climate change, disease transmission, water and soil contaminants, and geographic migration of microbes. While it is known that bioaerosols are generated when bubbles break on the surface of water containing microbes, it is largely unclear how viable soil-based microbes are transferred to the atmosphere. Here we report a previously unknown mechanism by which rain disperses soil bacteria into the air. Bubbles, tens of micrometres in size, formed inside the raindrops disperse micro-droplets containing soil bacteria during raindrop impingement. A single raindrop can transfer 0.01% of bacteria on the soil surface and the bacteria can survive more than one hour after the aerosol generation process. This work further reveals that bacteria transfer by rain is highly dependent on the regional soil profile and climate conditions.