Curt Cutler
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Curt Cutler.
Physical Review D | 1998
B. J. Owen; Lee Lindblom; Curt Cutler; Bernard F. Schutz; Alberto Vecchio; Nils Andersson
Gravitational radiation drives an instability in the r-modes of young rapidly rotating neutron stars. This instability is expected to carry away most of the angular momentum of the star by gravitational radiation emission, leaving a star rotating at about 100 Hz. In this paper we model in a simple way the development of the instability and evolution of the neutron star during the year-long spindown phase. This allows us to predict the general features of the resulting gravitational waveform. We show that a neutron star formed in the Virgo cluster could be detected by the LIGO and VIRGO gravitational wave detectors when they reach their “enhanced” level of sensitivity, with an amplitude signal-to-noise ratio that could be as large as about 8 if near-optimal data analysis techniques are developed. We also analyze the stochastic background of gravitational waves produced by the r-mode radiation from neutron-star formation throughout the universe. Assuming a substantial fraction of neutron stars are born with spin frequencies near their maximum values, this stochastic background is shown to have an energy density of about 10^(−9) of the cosmological closure density, in the range 20 Hz to 1 kHz. This radiation should be detectable by “advanced” LIGO as well.
Physical Review D | 2004
Leor Barack; Curt Cutler
Captures of stellar-mass compact objects (COs) by massive (
Classical and Quantum Gravity | 2002
B. Willke; P. Aufmuth; Carsten Aulbert; S. Babak; R. Balasubramanian; B. Barr; Steven J. Berukoff; S. Bose; G. Cagnoli; M. M. Casey; D. Churches; D. Clubley; Carlo Nicola Colacino; D. R. M. Crooks; Curt Cutler; Karsten Danzmann; R. Davis; E. J. Elliffe; Carsten Fallnich; Andreas Freise; S. Gossler; A. Grant; H. Grote; Gerhard Heinzel; A. Heptonstall; M. Heurs; J. Hough; Keita Kawabe; Karsten Kötter; V. Leonhardt
\sim 10^6 M_\odot
The Astrophysical Journal | 1992
Lars Bildsten; Curt Cutler
) black holes (MBHs) are potentially an important source for LISA, the proposed space-based gravitational-wave (GW) detector. The orbits of the inspiraling COs are highly complicated; they can remain rather eccentric up until the final plunge, and display extreme versions of relativistic perihelion precession and Lense-Thirring precession of the orbital plane. The strongest capture signals will be ~10 times weaker than LISAs instrumental noise, but in principle (with sufficient computing power) they can be disentangled from the noise by matched filtering. The associated template waveforms are not yet in hand, but theorists will very likely be able to provide them before LISA launches. Here we introduce a family of approximate (post-Newtonian) capture waveforms, given in (nearly) analytic form, for use in advancing LISA studies until more accurate versions are available. Our model waveforms include most of the key qualitative features of true waveforms, and cover the full space of capture-event parameters (including orbital eccentricity and the MBHs spin). Here we use our approximate waveforms to (i) estimate the relative contributions of different harmonics (of the orbital frequency) to the total signal-to-noise ratio, and (ii) estimate the accuracy with which LISA will be able to extract the physical parameters of the capture event from the measured waveform. For a typical source (a
arXiv: General Relativity and Quantum Cosmology | 2002
Curt Cutler; Kip S. Thorne
10 M_\odot
Physical Review D | 1998
Curt Cutler
CO captured by a
Physical Review D | 1998
P. R. Brady; T. D. Creighton; Curt Cutler; Bernard F. Schutz
10^6 M_\odot
The Astrophysical Journal | 1987
Curt Cutler; Lee Lindblom
MBH at a signal-to-noise ratio of 30), we find that LISA can determine the MBH and CO masses to within a fractional error of
Classical and Quantum Gravity | 2009
K. G. Arun; S. Babak; Emanuele Berti; Neil J. Cornish; Curt Cutler; Jonathan R. Gair; Scott A. Hughes; Bala R. Iyer; Ryan N. Lang; Ilya Mandel; Edward K. Porter; B. S. Sathyaprakash; Siddhartha Sinha; A. M. Sintes; M. Trias; Chris Van Den Broeck; Marta Volonteri
\sim 10^{-4}
Classical and Quantum Gravity | 2006
H. Lück; M. Hewitson; P. Ajith; B. Allen; P. Aufmuth; C. Aulbert; S. Babak; R. Balasubramanian; B. Barr; Steven J. Berukoff; Alexander Bunkowski; G. Cagnoli; C. A. Cantley; M. M. Casey; S. Chelkowski; Y. Chen; D. Churches; T. Cokelaer; C. N. Colacino; D. R. M. Crooks; Curt Cutler; Karsten Danzmann; R. J. Dupuis; E. J. Elliffe; Carsten Fallnich; A. Franzen; A. Freise; I. Gholami; S. Goßler; A. Grant
, measure