Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cynthia C. Gilmour is active.

Publication


Featured researches published by Cynthia C. Gilmour.


Environmental Pollution | 1991

Mercury methylation in aquatic systems affected by acid deposition

Cynthia C. Gilmour; E. A. Henry

Recently, it has been noted that fish in acidified lakes may contain elevated levels of mercury. While there is correlation among lakes between depressed pH and high mercury concentrations in fish, the cause of this problem is unknown. A number of hypotheses have been advanced in explanation, including increased mercury deposition, changes in mercury mobility due to acidification, pH dependent changes in mercury uptake by biota, and alterations in population size and/or structure which result in increased bioaccumulation in fish. Because fish accumulate mercury mainly in an organic form, methylmercury, changes in the biogeochemical cycling of this compound might account for elevated bioaccumulation. Mercury methylation is predominantly a microbial process which occurs in situ in lakes. This review focuses on microbiological and biogeochemical changes that may lead to increased levels of methylmercury in fresh waters impacted by acid-deposition. In particular, we focus on the hypothesis that sulfate-reducing bacteria are important mediators of metal methylation in aquatic systems and, moreover, that sulfate-deposition may stimulate methylmercury production by enhancing the activity of sulfate-reducing bacteria in sediments.


Biogeochemistry | 1998

Methylmercury concentrations and production rates across a trophic gradient in the northern Everglades

Cynthia C. Gilmour; Georgia Riedel; M. C. Ederington; J. T. Bell; J. M. Benoit; G. A. Gill; M. C. Stordal

Methylmercury (MeHg) concentrations and production rates were examined along with sulfur biogeochemistry in Everglades sediments in March, July and December, 1995, as part of a large, multi-investigator study, the Aquatic Cycling of Mercury in the Everglades (ACME) project. The sites examined constitute a trophic gradient, generated from agricultural runoff, across the Everglades Nutrient Removal (ENR) Area, which is a re-constructed wetland, and Water Conservation Areas (WCA) 2A, 2B and 3 in the northern Everglades. MeHg concentrations and %MeHg (MeHg as a percent of total Hg) were lowest in the more eutrophic areas and highest in the more pristine areas in the south. MeHg concentrations ranged from <0.1 ng gdw-1 sediment in the ENR to 5 ng gdw-1 in WCA3 sediments; and MeHg constituted <0.2% of total Hg (HgT) in ENR, but up to about 2% in two sites in WCA2B and WCA3. Methylation rates in surficial sediments, estimated using tracer-level injections of203 Hg(II) into intact sediment cores, ranged from 0 to 0.12 d-1, or about 1 to 10 ng g-1 d-1when the per day values are multiplied by the ambient total Hg concentration. Methylation was generally maximal at or within centimeters of the sediment surface, and was never observed in water overlying cores. The spatial pattern of MeHg production generally matched that of MeHg concentration. The coincident distributions of MeHg and its production suggest that in situ production controls concentration, and that MeHg concentration can be used as an analog for MeHg production. In addition, the spatial pattern of MeHg in Everglades sediments matches that in biota, suggesting that MeHg bioaccumulation may be predominantly a function of the de novo methylation rate in surficial sediments.Sulfate concentrations in surficial pore waters (up to 400 µm), microbial sulfate-reduction rates (up to 800 nm cc-1 d-1) and resultant pore water sulfide concentrations (up to 300 µm) at the eutrophic northern sites were all high relative to most freshwater systems. All declined to the south, and sulfate concentrations in WCA2B and in central WCA3 resembled those in oligotrophic lakes (50–100 µm). MeHg concentration and production were inversely related to sulfate reduction rate and pore water sulfide. Control of MeHg production in the northern Everglades appears to mimic that in an estuary, where sulfate concentrations are high and where sulfide produced by microbial sulfate reduction inhibits MeHg production.


Applied and Environmental Microbiology | 2006

Mercury Methylation by Dissimilatory Iron-Reducing Bacteria

E. J. Kerin; Cynthia C. Gilmour; E. Roden; M. T. Suzuki; J. D. Coates; Robert P. Mason

ABSTRACT The Hg-methylating ability of dissimilatory iron-reducing bacteria in the genera Geobacter, Desulfuromonas, and Shewanella was examined. All of the Geobacter and Desulfuromonas strains tested methylated mercury while reducing Fe(III), nitrate, or fumarate. In contrast, none of the Shewanella strains produced methylmercury at higher levels than abiotic controls under similar culture conditions. Geobacter and Desulfuromonas are closely related to known Hg-methylating sulfate-reducing bacteria within the Deltaproteobacteria.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition

Reed Harris; John W. M. Rudd; Marc Amyot; Christopher L. Babiarz; Ken G. Beaty; Paul J. Blanchfield; R. A. Bodaly; Brian A. Branfireun; Cynthia C. Gilmour; Jennifer A. Graydon; Andrew Heyes; Holger Hintelmann; James P. Hurley; Carol A. Kelly; David P. Krabbenhoft; S. E. Lindberg; Robert P. Mason; Michael J. Paterson; Cheryl L. Podemski; Art Robinson; Ken A. Sandilands; George R. Southworth; Vincent L. St. Louis; Michael T. Tate

Methylmercury contamination of fisheries from centuries of industrial atmospheric emissions negatively impacts humans and wildlife worldwide. The response of fish methylmercury concentrations to changes in mercury deposition has been difficult to establish because sediments/soils contain large pools of historical contamination, and many factors in addition to deposition affect fish mercury. To test directly the response of fish contamination to changing mercury deposition, we conducted a whole-ecosystem experiment, increasing the mercury load to a lake and its watershed by the addition of enriched stable mercury isotopes. The isotopes allowed us to distinguish between experimentally applied mercury and mercury already present in the ecosystem and to examine bioaccumulation of mercury deposited to different parts of the watershed. Fish methylmercury concentrations responded rapidly to changes in mercury deposition over the first 3 years of study. Essentially all of the increase in fish methylmercury concentrations came from mercury deposited directly to the lake surface. In contrast, <1% of the mercury isotope deposited to the watershed was exported to the lake. Steady state was not reached within 3 years. Lake mercury isotope concentrations were still rising in lake biota, and watershed mercury isotope exports to the lake were increasing slowly. Therefore, we predict that mercury emissions reductions will yield rapid (years) reductions in fish methylmercury concentrations and will yield concomitant reductions in risk. However, a full response will be delayed by the gradual export of mercury stored in watersheds. The rate of response will vary among lakes depending on the relative surface areas of water and watershed.


AMBIO: A Journal of the Human Environment | 2007

Recovery of Mercury-Contaminated Fisheries

John Munthe; R. A. Bodaly; Brian A. Branfireun; Charles T. Driscoll; Cynthia C. Gilmour; Reed Harris; Milena Horvat; Marc Lucotte; O. Malm

Abstract In this paper, we synthesize available information on the links between changes in ecosystem loading of inorganic mercury (Hg) and levels of methylmercury (MeHg) in fish. Although it is widely hypothesized that increased Hg load to aquatic ecosystems leads to increases in MeHg in fish, there is limited quantitative data to test this hypothesis. Here we examine the available evidence from a range of sources: studies of ecosystems contaminated by industrial discharges, observations of fish MeHg responses to changes in atmospheric load, studies over space and environmental gradients, and experimental manipulations. A summary of the current understanding of the main processes involved in the transport and transformation from Hg load to MeHg in fish is provided. The role of Hg loading is discussed in context with other factors affecting Hg cycling and bioaccumulation in relation to timing and magnitude of response in fish MeHg. The main conclusion drawn is that changes in Hg loading (increase or decrease) will yield a response in fish MeHg but that the timing and magnitude of the response will vary depending of ecosystem-specific variables and the form of the Hg loaded.


Environmental Science & Technology | 2013

Mercury Methylation by Novel Microorganisms from New Environments

Cynthia C. Gilmour; Mircea Podar; Allyson L. Bullock; Andrew M. Graham; Steven D. Brown; Anil C. Somenahally; Alexander Johs; Richard A. Hurt; Kathryn L. Bailey; Dwayne A. Elias

Microbial mercury (Hg) methylation transforms a toxic trace metal into the highly bioaccumulated neurotoxin methylmercury (MeHg). The lack of a genetic marker for microbial MeHg production has prevented a clear understanding of Hg-methylating organism distribution in nature. Recently, a specific gene cluster (hgcAB) was linked to Hg methylation in two bacteria.1 Here we test if the presence of hgcAB orthologues is a reliable predictor of Hg methylation capability in microorganisms, a necessary confirmation for the development of molecular probes for Hg-methylation in nature. Although hgcAB orthologues are rare among all available microbial genomes, organisms are much more phylogenetically and environmentally diverse than previously thought. By directly measuring MeHg production in several bacterial and archaeal strains encoding hgcAB, we confirmed that possessing hgcAB predicts Hg methylation capability. For the first time, we demonstrated Hg methylation in a number of species other than sulfate- (SRB) and iron- (FeRB) reducing bacteria, including methanogens, and syntrophic, acetogenic, and fermentative Firmicutes. Several of these species occupy novel environmental niches for Hg methylation, including methanogenic habitats such as rice paddies, the animal gut, and extremes of pH and salinity. Identification of these organisms as Hg methylators now links methylation to discrete gene markers in microbial communities.


Biogeochemistry | 1998

Behavior of mercury in the Patuxent River estuary

J. M. Benoit; Cynthia C. Gilmour; Robert P. Mason; Georgia Riedel; Gerhardt F. Riedel

An overview of a comprehensive study of the behavior and fate of mercury in the estuarine Patuxent River is presented. Total Hg (HgT) and methylmercury (MeHg) exhibited weakly non-conservative behavior in the estuary. Total Hg concentrations ranged from 6 ng L-1 in the upper reaches of the sub-urbanized tidal freshwater river to <0.5 ng L-1 in the mesohaline lower estuary. Filterable (0.2 µm) HgT ranged from 0.2 to 1.5 ng L-1. On average, MeHg accounted for <5% of unfiltered HgT and <2% of filterable HgT. Dissolved gaseous section Hg (DGHg) concentrations were highest (up to 150 pg L-1) in the summer in the mesohaline, but were not well correlated with primary production or chlorophyll a, demonstrating the complex nature of Hg0 formation and cycling in an estuarine environment. Organic matter content appeared to control the HgT content of sediments, while MeHg in sediments was positively correlated with HgT and organic matter, and negatively correlated with sulfide. MeHg in sediments was low (0.1 to 0.5% of HgT). Preliminary findings suggest that net MeHg production within sediments exceeds net accumulation. Although HgT in pore waters increased with increasing sulfide, bulk MeHg concentrations decreased. The concentration of MeHg in sediments was not related to the concentration of HgT in pore waters. These observations support the hypothesis that sulfide affects the speciation and therefore bioavailability of dissolved and/or solid-phase Hg for methylation. Comparison with other ecosystems, and the negative correlation between pore water sulfide and sediment MeHg, suggest that sulfide limits production and accumulation of MeHg in this system.


Applied and Environmental Microbiology | 2001

Aspects of bioavailability of mercury for methylation in pure cultures of Desulfobulbus propionicus (1pr3)

J. M. Benoit; Cynthia C. Gilmour; Robert P. Mason

ABSTRACT We have previously hypothesized that sulfide inhibits Hg methylation by decreasing its bioavailability to sulfate-reducing bacteria (SRB), the important methylators of Hg in natural sediments. With a view to designing a bioassay to test this hypothesis, we investigated a number of aspects of Hg methylation by the SRBDesulfobulbus propionicus, including (i) the relationship between cell density and methylmercury (MeHg) production, (ii) the time course of Hg methylation relative to growth stage, (iii) changes in the bioavailability of an added inorganic Hg (HgI) spike over time, and (iv) the dependence of methylation on the concentration of dissolved HgI present in the culture. We then tested the effect of sulfide on MeHg production by this microorganism. These experiments demonstrated that under conditions of equal bioavailability, per-cell MeHg production was constant through log-phase culture growth. However, the methylation rate of a new Hg spike dramatically decreased after the first 5 h. This result was seen whether methylation rate was expressed as a fraction of the total added Hg or the filtered HgI concentration, which suggests that Hg bioavailability decreased through both changes in Hg complexation and formation of solid phases. At low sulfide concentration, MeHg production was linearly related to the concentration of filtered HgI. The methylation of filtered HgI decreased about fourfold as sulfide concentration was increased from 10−6 to 10−3 M. This decline is consistent with a decrease in the bioavailability of HgI, possibly due to a decline in the dissolved neutral complex, HgS0.


Geochimica et Cosmochimica Acta | 2001

Constants for mercury binding by dissolved organic matter isolates from the Florida Everglades

J. M. Benoit; Robert P. Mason; Cynthia C. Gilmour; George R. Aiken

Dissolved organic matter (DOM) has been implicated as an important complexing agent for Hg that can affect its mobility and bioavailability in aquatic ecosystems. However, binding constants for natural Hg-DOM complexes are not well known. We employed a competitive ligand approach to estimate conditional stability constants for Hg complexes with DOM isolates collected from Florida Everglades surface waters. The isolates examined were the hydrophobic fraction of DOM from a eutrophic, sulfidic site (F1-HPoA) and the hydrophilic fraction from an oligotrophic, low-sulfide site (2BS-HPiA). Our experimental determinations utilized overall octanol-water partitioning coefficients (Dow) for 203Hg at 0.01 M chloride and across pH and DOM concentration gradients. Use of this radioisotope allowed rapid determinations of Hg concentrations in both water and octanol phases without problems of matrix interference. Conditional stability constants (I = 0.06, 23°C) were log K′ = 11.8 for F1-HPoA and log K′ = 10.6 for 2BS-HPiA. These are similar to previously published stability constants for Hg binding to low-molecular-weight thiols. Further, F1-HPoA showed a pH-dependent decline in Dow that was consistent with models of Hg complexation with thiol groups as the dominant Hg binding sites in DOM. These experiments demonstrate that the DOM isolates are stronger ligands for Hg than chloride ion or ethylenediamine-tetraacetic acid. Speciation calculations indicate that at the DOM concentrations frequently measured in Everglades, 20 to 40 μM, significant complexation of Hg by DOM would be expected in aerobic (sulfide-free) surface waters.


Environmental Toxicology and Chemistry | 1999

Estimation of mercury‐sulfide speciation in sediment pore waters using octanol—water partitioning and implications for availability to methylating bacteria

J. M. Benoit; Robert P. Mason; Cynthia C. Gilmour

The octanol-water partioning of inorganic mercury decreased with increasing sulfide, supporting a model that predicts decreased fractions of neutral Hg-S species with increasing sulfide. These results help explain the decreased availability of Hg to methylating bacteria under sulfidic conditions, and the inverse relationship between sulfide and methylmercury observed in sediments.

Collaboration


Dive into the Cynthia C. Gilmour's collaboration.

Top Co-Authors

Avatar

Robert P. Mason

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

David P. Krabbenhoft

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Dwayne A. Elias

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gerhardt F. Riedel

Academy of Natural Sciences of Drexel University

View shared research outputs
Top Co-Authors

Avatar

George R. Aiken

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

J. M. Benoit

Academy of Natural Sciences of Drexel University

View shared research outputs
Top Co-Authors

Avatar

Mircea Podar

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Steven D. Brown

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Andrew Heyes

University of Maryland Center for Environmental Science

View shared research outputs
Top Co-Authors

Avatar

Anthony V. Palumbo

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge