Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cynthia S. Lancaster is active.

Publication


Featured researches published by Cynthia S. Lancaster.


Clinical Cancer Research | 2012

Proximal Tubular Secretion of Creatinine by Organic Cation Transporter OCT2 in Cancer Patients

Giuliano Ciarimboli; Cynthia S. Lancaster; Eberhard Schlatter; Ryan M. Franke; Jason A. Sprowl; Hermann Pavenstädt; Vivian Massmann; Denise Guckel; Ron H.J. Mathijssen; Wenjian Yang; Ching-Hon Pui; Mary V. Relling; Edwin Herrmann; Alex Sparreboom

Purpose: Knowledge of transporters responsible for the renal secretion of creatinine is key to a proper interpretation of serum creatinine and/or creatinine clearance as markers of renal function in cancer patients receiving chemotherapeutic agents. Experimental Design: Creatinine transport was studied in transfected HEK293 cells in vitro and in wild-type mice and age-matched organic cation transporter 1 and 2–deficient [Oct1/2(−/−)] mice ex vivo and in vivo. Clinical pharmacogenetic and transport inhibition studies were done in two separate cohorts of cancer patients. Results: Compared with wild-type mice, creatinine clearance was significantly impaired in Oct1/2(−/−) mice. Furthermore, creatinine inhibited organic cation transport in freshly isolated proximal tubules from wild-type mice and humans, but not in those from Oct1/2(−/−) mice. In a genetic association analysis (n = 590), several polymorphisms around the OCT2/SLC22A2 gene locus, including rs2504954 (P = 0.000873), were significantly associated with age-adjusted creatinine levels. Furthermore, in cancer patients (n = 68), the OCT2 substrate cisplatin caused an acute elevation of serum creatinine (P = 0.0083), consistent with inhibition of an elimination pathway. Conclusions: Collectively, this study shows that OCT2 plays a decisive role in the renal secretion of creatinine. This process can be inhibited by OCT2 substrates, which impair the usefulness of creatinine as a marker of renal function. Clin Cancer Res; 18(4); 1101–8. ©2012 AACR.


Molecular and Cellular Biology | 2007

TOR Signaling Is a Determinant of Cell Survival in Response to DNA Damage

Changxian Shen; Cynthia S. Lancaster; Bin Shi; Hong Guo; Padma Thimmaiah; Mary-Ann Bjornsti

ABSTRACT The conserved TOR (target of rapamycin) kinase is part of a TORC1 complex that regulates cellular responses to environmental stress, such as amino acid starvation and hypoxia. Dysregulation of Akt-TOR signaling has also been linked to the genesis of cancer, and thus, this pathway presents potential targets for cancer chemotherapeutics. Here we report that rapamycin-sensitive TORC1 signaling is required for the S-phase progression and viability of yeast cells in response to genotoxic stress. In the presence of the DNA-damaging agent methyl methanesulfonate (MMS), TOR-dependent cell survival required a functional S-phase checkpoint. Rapamycin inhibition of TORC1 signaling suppressed the Rad53 checkpoint-mediated induction of ribonucleotide reductase subunits Rnr1 and Rnr3, thereby abrogating MMS-induced mutagenesis and enhancing cell lethality. Moreover, cells deleted for RNR3 were hypersensitive to rapamycin plus MMS, providing the first demonstration that Rnr3 contributes to the survival of cells exposed to DNA damage. Our findings support a model whereby TORC1 acts as a survival pathway in response to genotoxic stress by maintaining the deoxynucleoside triphosphate pools necessary for error-prone translesion DNA polymerases. Thus, TOR-dependent cell survival in response to DNA-damaging agents coincides with increased mutation rates, which may contribute to the acquisition of chemotherapeutic drug resistance.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Oxaliplatin-induced neurotoxicity is dependent on the organic cation transporter OCT2

Jason A. Sprowl; Giuliano Ciarimboli; Cynthia S. Lancaster; Hugh Giovinazzo; Alice A. Gibson; Guoqing Du; Laura J. Janke; Guido Cavaletti; Anthony F. Shields; Alex Sparreboom

Oxaliplatin is an integral component of colorectal cancer therapy, but its clinical use is associated with a dose-limiting peripheral neurotoxicity. We found that the organic cation transporter 2 (OCT2) is expressed on dorsal root ganglia cells within the nervous system where oxaliplatin is known to accumulate. Cellular uptake of oxaliplatin was increased by 16- to 35-fold in cells overexpressing mouse Oct2 or human OCT2, and this process was associated with increased DNA platination and oxaliplatin-induced cytotoxicity. Furthermore, genetic or pharmacologic knockout of Oct2 protected mice from hypersensitivity to cold or mechanical-induced allodynia, which are established tests to assess acute oxaliplatin-induced neurotoxicity. These findings provide a rationale for the development of targeted approaches to mitigate this debilitating toxicity.


Clinical Cancer Research | 2010

Influence of Oct1/Oct2-Deficiency on Cisplatin-Induced Changes in Urinary N-Acetyl-β-D-Glucosaminidase

Ryan M. Franke; Ashley M. Kosloske; Cynthia S. Lancaster; Kelly K. Filipski; Chaoxin Hu; Oliver Zolk; Ron H.J. Mathijssen; Alex Sparreboom

Purpose: This study aimed to test the influence of functional renal organic cation transporters (OCT2 in humans, Oct1 and Oct2 in mice) on biomarkers of cisplatin nephrotoxicity, such as urinary activity of N-acetyl-β-D-glucosaminidase (NAG). Experimental Design: Temporal cisplatin-induced nephrotoxicity was assessed by histopathology and biomarkers. Cisplatin-mediated NAG changes and survival were determined in wild-type and Oct1/2(-/-) mice. Identification of OCT2 inhibitors was done in transfected 293Flp-In cells, and the NCI60 cell line panel was used to assess contribution of OCT2 to cisplatin uptake in cancer cells. Results: Classical biomarkers such as blood urea nitrogen and serum creatinine were not elevated until 72 hours after cisplatin administration and substantial kidney damage had occurred. Oct1/2(-/-) mice had 2.9-fold lower NAG by 4 hours (P < 0.0001) and 2.3-fold increased survival (P = 0.0097). Among 16 agents, cimetidine strongly inhibited uptake of tetraethylammonium bromide (P = 0.0006) and cisplatin (P < 0.0001), but did not have an influence on cisplatin uptake in SK-OV-3 cells, the cancer line with the highest OCT2 mRNA levels. In wild-type mice, cimetidine inhibited cisplatin-induced NAG changes (P = 0.016 versus cisplatin alone) to a degree similar to that seen in Oct1/2(-/-) mice receiving cisplatin (P = 0.91). Cumulative NAG activity of >0.4 absorbance units (AU) was associated with 21-fold increased odds for severe nephrotoxicity (P = 0.0017), which was linked with overall survival (hazard ratio, 8.1; 95% confidence interval, 2.1-31; P = 0.0078). Conclusions: Cimetidine is able to inhibit OCT2-mediated uptake of cisplatin in the kidney, and subsequently ameliorate nephrotoxicity likely with minimal effect on uptake in tumor cells. Clin Cancer Res; 16(16); 4198–206. ©2010 AACR.


Clinical Cancer Research | 2012

Influence of Polymorphic OATP1B-Type Carriers on the Disposition of Docetaxel

Anne-Joy M. de Graan; Cynthia S. Lancaster; Amanda Obaidat; Bruno Hagenbuch; Laure Elens; Lena E. Friberg; Peter de Bruijn; Shuiying Hu; Alice A. Gibson; Gitte H. Bruun; Thomas J. Corydon; Torben S. Mikkelsen; Aisha L. Walker; Guoqing Du; Walter J. Loos; Ron H.N. van Schaik; Sharyn D. Baker; Ron H.J. Mathijssen; Alex Sparreboom

Purpose: Docetaxel is extensively metabolized by CYP3A4 in the liver but mechanisms by which the drug is taken up into hepatocytes remain poorly understood. We hypothesized that (i) liver uptake of docetaxel is mediated by the polymorphic solute carriers OATP1B1 and OATP1B3 and (ii) inherited genetic defects in this process may impair systemic drug elimination. Experimental Design: Transport of docetaxel was studied in vitro using various cell lines stably transfected with OATP1B1*1A (wild-type), OATP1B1*5 [c.521T>C (V174A); rs4149056], OATP1B3, or the mouse transporter Oatp1b2. Docetaxel clearance was evaluated in wild-type and Oatp1b2-knockout mice as well as in two cohorts of patients with multiple variant transporter genotypes (n = 213). Results: Docetaxel was found to be a substrate for OATP1B1, OATP1B3, and Oatp1b2 but was not transported by OATP1B1*5. Deficiency of Oatp1b2 in mice was associated with an 18-fold decrease in docetaxel clearance (P = 0.0099), which was unrelated to changes in intrinsic metabolic capacity in mouse liver microsomes. In patients, however, none of the studied common reduced function variants in OATP1B1 or OATP1B3 were associated with docetaxel clearance (P > 0.05). Conclusions: The existence of at least two potentially redundant uptake transporters in the human liver with similar affinity for docetaxel supports the possibility that functional defects in both of these proteins may be required to confer substantially altered disposition phenotypes. In view of the established exposure–toxicity relationships for docetaxel, we suggest that caution is warranted if docetaxel has to be administered together with agents that potently inhibit both OATP1B1 and OATP1B3. Clin Cancer Res; 18(16); 4433–40. ©2012 AACR.


Clinical Pharmacology & Therapeutics | 2011

Effect of ABCC2 (MRP2) Transport Function on Erythromycin Metabolism

Ryan M. Franke; Cynthia S. Lancaster; C.J. Peer; Alice A. Gibson; Ashley M. Kosloske; Shelley Orwick; Ron H.J. Mathijssen; William D. Figg; Sharyn D. Baker; Alex Sparreboom

The macrolide antiobiotic erythromycin undergoes extensive hepatic metabolism and is commonly used as a probe for cytochrome P450 (CYP) 3A4 activity. By means of a transporter screen, erythromycin was identified as a substrate for the transporter ABCC2 (MRP2) and its murine ortholog, Abcc2. Because these proteins are highly expressed on the biliary surface of hepatocytes, we hypothesized that impaired Abcc2 function may influence the rate of hepatobiliary excretion and thereby enhance erythromycin metabolism. Using Abcc2 knockout mice, we found that Abcc2 deficiency was associated with a significant increase in erythromycin metabolism, whereas murine Cyp3a protein expression and microsomal Cyp3a activity were not affected. Next, in a cohort of 108 human subjects, we observed that homozygosity for a common reduced‐function variant in ABCC2 (rs717620) was also linked to an increase in erythromycin metabolism but was not correlated with the clearance of midazolam. These results suggest that impaired ABCC2 function can alter erythromycin metabolism, independent of changes in CYP3A4 activity.


Clinical Cancer Research | 2010

Cisplatin-Induced Downregulation of OCTN2 Affects Carnitine Wasting

Cynthia S. Lancaster; Chaoxin Hu; Ryan M. Franke; Kelly Kristin Filipski; Shelley Orwick; Zhaoyuan Chen; Zhili Zuo; Walter J. Loos; Alex Sparreboom

Purpose: Carnitine is an essential cofactor for mitochondrial fatty acid oxidation that is actively reabsorbed by the luminal transporter Octn2 (Slc22a5). Because the nephrotoxic agent cisplatin causes urinary loss of carnitine in humans, we hypothesized that cisplatin may affect Octn2 function. Experimental Design: Excretion of carnitine and acetylcarnitine was measured in urine collected from mice with or without cisplatin administration. The transport of carnitine was assessed in cells that were transfected with OCT1 or OCT2. The effect of cisplatin treatment on gene expression was analyzed using a mouse GeneChip array and validated using quantitative reverse transcriptase-PCR. Results: In wild-type mice, urinary carnitine excretion at baseline was ∼3-fold higher than in mice lacking the basolateral cisplatin transporters Oct1 and Oct2 [Oct1/2(−/−) mice], indicating that carnitine itself undergoes basolateral uptake into the kidney. Transport of carnitine by OCT2, but not OCT1, was confirmed in transfected cells. We also found that cisplatin caused an increase in the urinary excretion of carnitine and acetylcarnitine in wild-type mice but not in Oct1/2(−/−) mice, suggesting that tubular transport of cisplatin is a prerequisite for this phenomenon. Cisplatin did not directly inhibit the transport of carnitine by Octn2 but downregulated multiple target genes of the transcription factor peroxisome proliferator activated receptor α, including Slc22a5, in the kidney of wild-type mice that were absent in Oct1/2(−/−) mice. Conclusion: Our study shows a pivotal role of Oct1 and Oct2 in cisplatin-related disturbances in carnitine homeostasis. We postulate that this phenomenon is triggered by deactivation of peroxisome proliferator activated receptor α and leads to deregulation of carnitine-shuttle genes. Clin Cancer Res; 16(19); 4789–99. ©2010 AACR.


Molecular Cancer Therapeutics | 2012

Inhibition of OCTN2-Mediated Transport of Carnitine by Etoposide

Chaoxin Hu; Cynthia S. Lancaster; Zhili Zuo; Shuiying Hu; Zhaoyuan Chen; Jeffrey E. Rubnitz; Sharyn D. Baker; Alex Sparreboom

OCTN2 is a bifunctional transporter that reabsorbs filtered carnitine in a sodium-dependent manner and secretes organic cations into urine as a proton antiport mechanism. We hypothesized that inhibition of OCTN2 by anticancer drugs can influence carnitine resorption. OCTN2-mediated transport inhibition by anticancer drugs was assessed using cells transfected with human OCTN2 (hOCTN2) or mouse Octn2 (mOctn2). Excretion of carnitine and acetylcarnitine was measured in urine collected from mice and pediatric patients with cancer before and after administration of etoposide. Five of 27 tested drugs (50–100 μmol/L) inhibited hOCTN2-mediated carnitine uptake by 42% to 85% (P < 0.001). Of these inhibitors, etoposide was itself a transported substrate of hOCTN2 and mOctn2. Etoposide uptake by hOCTN2 was reversed in the presence of excess carnitine. This competitive inhibitory mechanism was confirmed in an in silico molecular docking analysis. In addition, etoposide inhibited the transcellular apical-to-basolateral flux of carnitine in kidney cells. Etoposide was also associated with a significant urinary loss of carnitine in mice (∼1.5-fold) and in patients with cancer (∼2.4-fold). Collectively, these findings indicate that etoposide can inhibit hOCTN2 function, potentially disturb carnitine homeostasis, and that this phenomenon can contribute to treatment-related toxicities. Mol Cancer Ther; 11(4); 921–9. ©2012 AACR.


Molecular and Cellular Biology | 2006

Distinct functional domains of Ubc9 dictate cell survival and resistance to genotoxic stress.

Robert C. A. M. van Waardenburg; David M. Duda; Cynthia S. Lancaster; Brenda A. Schulman; Mary-Ann Bjornsti

ABSTRACT Covalent modification with SUMO alters protein function, intracellular localization, or protein-protein interactions. Target recognition is determined, in part, by the SUMO E2 enzyme, Ubc9, while Siz/Pias E3 ligases may facilitate select interactions by acting as substrate adaptors. A yeast conditional Ubc9P123L mutant was viable at 36°C yet exhibited enhanced sensitivity to DNA damage. To define functional domains in Ubc9 that dictate cellular responses to genotoxic stress versus those necessary for cell viability, a 1.75-Å structure of yeast Ubc9 that demonstrated considerable conservation of backbone architecture with human Ubc9 was solved. Nevertheless, differences in side chain geometry/charge guided the design of human/yeast chimeras, where swapping domains implicated in (i) binding residues within substrates that flank canonical SUMOylation sites, (ii) interactions with the RanBP2 E3 ligase, and (iii) binding of the heterodimeric E1 and SUMO had distinct effects on cell growth and resistance to DNA-damaging agents. Our findings establish a functional interaction between N-terminal and substrate-binding domains of Ubc9 and distinguish the activities of E3 ligases Siz1 and Siz2 in regulating cellular responses to genotoxic stress.


Molecular Cancer Therapeutics | 2013

Modulation of OATP1B-type Transporter Function Alters Cellular Uptake and Disposition of Platinum Chemotherapeutics

Cynthia S. Lancaster; Jason A. Sprowl; Aisha L. Walker; Shuiying Hu; Alice A. Gibson; Alex Sparreboom

Expression of the human organic anion transporting polypeptides OATP1B1 and OATP1B3 has been previously believed to be restricted to hepatocytes. Here we show that the gene encoding OATP1B3, but not OATP1B1, is abundantly expressed in multiple human solid tumors that include hepatocellular, lung, and ovarian carcinomas. Surprisingly, OATP1B3 gene expression in a panel of 60 human tumor cell lines was linked with sensitivity to multiple cytotoxic agents, including the platinum anticancer drugs cisplatin, carboplatin, and oxaliplatin. In addition, overexpression of OATP1B3 in mammalian cells increased cellular accumulation of platinum agents and decreased cell survival. In mice with a targeted disruption of the ortholog transporter Oatp1b2, the liver-to-plasma ratio of cisplatin was significantly reduced compared with wild-type mice, without concurrent changes in expression profiles of other transporter genes. Our findings indicate an unexpected role for tumoral and host OATP1B-type carriers in the toxicity and disposition of platinum anticancer drugs, and may provide a foundation for understanding the extensive interindividual pharmacodynamic variability seen with these drugs in patients. Mol Cancer Ther; 12(8); 1537–44. ©2013 AACR.

Collaboration


Dive into the Cynthia S. Lancaster's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alice A. Gibson

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Ryan M. Franke

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Jason A. Sprowl

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Mary-Ann Bjornsti

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Ron H.J. Mathijssen

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Aisha L. Walker

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Ashley M. Kosloske

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Chaoxin Hu

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge