Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. A. Sleper is active.

Publication


Featured researches published by D. A. Sleper.


Theoretical and Applied Genetics | 1983

Theory and application of half-sib matings in forage grass breeding

Henry T. Nguyen; D. A. Sleper

SummaryHalf-sib (HS) matings, including polycross, topcross, and open-pollination, are useful in the breeding of cross-pollinated sexual perennial forage grasses to evaluate general combining ability of parental clones for synthetic cultivar development, recombine selected entries in recurrent selection programs, and obtain quantitative genetic information. The objective of this paper is to review uses of HS matings in breeding of these forage grasses with emphasis on theoretical aspects related to quantitative genetic analysis.Polycross mating with adequate replications and sufficient isolation is recommended over topcross and open-pollinated mating schemes in generating HS families for quantitative genetic studies. For the estimates of many genetic parameters to be valid, the parents must be a random sample from a random mating population in linkage equilibrium. Precision of the estimates depends on adequante sampling of the population of genotypes and environments used for evaluation.Analyses of variance on HS families and parental clones, and analysis of covariance between parent and offspring provide useful information on additivity of genetic effects and on genotype × environment interactions. Classical, narrow-sense heritability on an individual plant basis can be estimated and used to predict genetic gain from individual (mass) selection, providing that within family variance is estimable. If the forage breeder uses family selection, heritability should be estimated according to the proposed unit of selection. The selection unit must be specified in terms of numbers of replications, years, and locations. Polycross HS family selection can be readily adapted to a population improvement program in forage grass breeding.Narrow-sense heritability can also be estimated by doubling the linear regression coefficient of HS prog eny means on parental means. When HS families and parents are evaluated together in replicated experiments under similar environments, covariance analysis is recommended to remove the genotype × environment interaction covariance and environmental error covariance between parent and offspring, since these nongenetic covariances may result in inflated heritability estimates and misleading expected genetic gains from selection.


Theoretical and Applied Genetics | 2001

Molecular characterization of resistance to Heterodera glycines in soybean PI 438489B

Pin Yue; Prakash R. Arelli; D. A. Sleper

Abstract Soybean (Glycine max L. Merr.) plant introduction (PI) 438489B is a newly found germplasm source that has resistance to multiple soybean cyst nematode (Heterodera glycines Ichinohe, SCN) races. We studied the inheritance of resistance to SCN races 1, 2, 3, 5 and 14 in PI 438489B using F2 and F2:3 families, which were generated by crossing to the susceptible cultivar ’Hamilton.’ The objectives of this study were to investigate the inheritance for resistance to SCN races in PI 438489B, to find molecular markers associated with resistances, and to study the allelic relationships among resistance loci for different SCN races. The results showed that the responses to SCN races were approximately normally distributed with large environmental effects, and were also highly correlated, which implied that genes giving resistance to different races were similar. The narrow-sense heritabilities of resistance to all five SCN races ranged from 0.55 to 0.88. Fifty one restriction fragment length polymorphism (RFLP) markers and 64 simple sequence repeat (SSR) markers were found to be polymorphic in the F2 population. Quantitative trait loci (QTLs) associated with resistance to SCN races were anchored on soybean linkage groups (LGs) A1, A2, B1, B2, C1, C2, D1a, E and G. These QTLs explained 47.3%, 45.8%, 51.5%, 34.5% and 37.2% of the total phenotypic variances, respectively, for each race we investigated. Some QTLs for different races encompassed the same region of flanking markers; therefore, QTLs for multiple races may be linked or pleiotropic effects may be involved. Some loci provided resistance in a race-specific manner. Resistance to SCN race 14 had a different pattern compared to other races. Our results indicated that resistance to race 14 did not include loci on LGs A2 and G. These flanking markers associated with QTLs could be used to select for resistance to multiple SCN races in soybean breeding programs.


Theoretical and Applied Genetics | 1999

RFLP markers associated with soybean cyst nematode resistance and seed composition in a ‘Peking’בEssex’ population

B.X. Qiu; Prakash R. Arelli; D. A. Sleper

Abstract Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, causes severe damage to soybean [Glycine max (L.) Merr] throughout North America and worldwide. Molecular markers associated with loci conferring SCN resistance would be useful in breeding programs using marker-assisted selection (MAS). In this study, 200 F2:3 families derived from two contrasting parents, SCN-resistant ‘Peking’ with relatively low protein and oil concentrations, and SCN-susceptible ‘Essex’ with high protein and oil concentrations, were used to determine loci underlying the SCN resistance and seed composition. Three different SCN Race isolates (1, 3, and 5) were used to screen both parents and F2:3 families. The parents were surveyed with 216 restriction fragment length polymorphism (RFLP) probes with five different restriction enzymes. Fifty-six were polymorphic and contrasted with trait data from bioassays to identify molecular markers associated with loci controlling resistance to SCN and seed composition. Five RFLP markers, A593 and T005 on linkage group (LG) B, A018 on LG E, and K014 and B072 on LG H, were significantly linked to resistance loci for Race 1 isolate, which jointly explained 57.7% of the total phenotypic variation. Three markers (B072 and K014, both on LG H; T005 on LG B) were associated with resistance to the Race 3 isolate and jointly explained 21.4% of the total phenotypic variation. Two markers (K011 on LG I, A963 on LG E) associated with resistance to the Race 5 isolate together explained 14.0% of the total phenotypic variation. In the same population we also identified two RFLP markers (B072 on LG H, B148 on LG F) associated with loci conferring protein concentration, which jointly explained 32.3% of the total phenotypic variation. Marker B072 was also linked to loci controlling the concentration of seed oil, which explained 21% of the total phenotypic variation. Clustering among quantitative trait loci (QTLs) conditioning resistance to different SCN Race isolates and seed protein and oil concentrations may exist in this population. We believe that markers located near these QTLs could be used to select for new SCN resistance and higher levels of seed protein and oil concentrations in breeding improved soybean cultivars.


Plant and Cell Physiology | 2010

Differential expression of isoflavone biosynthetic genes in soybean during water deficits.

Juan J. Gutierrez-Gonzalez; Satish K. Guttikonda; Lam-Son Phan Tran; Donavan L. Aldrich; Rui Zhong; Oliver Yu; Henry T. Nguyen; D. A. Sleper

Numerous environmental factors influence isoflavone accumulation and have long hampered their genetic dissection. Temperature and water regimes are two of the most significant abiotic factors. However, while the effects of temperature have been widely studied, little is known about how water scarcity might affect isoflavone concentration in seeds. Studies have shown that accumulation of isoflavones is promoted by well-watered conditions, but the molecular basis remains elusive. The length and severity of the water stress required to induce changes are also still unknown. In the present work, several intensities of water stress were evaluated at various critical stages for soybean [Glycine max (L.) Merr.] seed development, in both field and controlled environments. The results suggested that only long-term progressive drought, spanning most of the seed developmental stages, significantly decreased isoflavone content in seeds. The reduction is proportional to the intensity of the stress and appears to occur in a genotype-dependent manner. However, regardless of water regime, isoflavone compounds were mainly accumulated in the later seed developmental stages. Transcripts of the most important genes for isoflavone biosynthesis were also quantified from samples collected at key seed developmental stages under well-watered and long-term water deficit conditions. Expression of CHS7, CHS8 and IFS2 correlated with isoflavone accumulation under well-watered conditions. Interestingly, we found that the two isoflavone synthase genes in soybean (IFS1 and IFS2) showed different patterns of expression. The abundance of IFS1 transcripts was maintained at a constant rate, whereas IFS2 was down-regulated and highly correlated with isoflavone accumulation under both water deficit and well-watered conditions, suggesting IFS2 as a main contributor to isoflavone diminution under drought.


Transgenic Research | 2008

Silencing of GmFAD3 gene by siRNA leads to low α-linolenic acids (18:3) of fad3-mutant phenotype in soybean [Glycine max (Merr.)]

Teresita Flores; Olga V. Karpova; Xiujuan Su; Peiyu Zeng; Kristin D. Bilyeu; D. A. Sleper; Henry T. Nguyen; Zhanyuan J. Zhang

RNA interference (RNAi) has been recently employed as an effective experimental tool for both basic and applied biological studies in various organisms including plants. RNAi deploys small RNAs, mainly small interfering RNAs (siRNAs), to mediate the degradation of mRNA for regulating gene expression in plants. Here we report an efficient siRNA-mediated gene silencing of the omega-3 fatty acid desaturase (FAD3) gene family in a complex genome, the soybean (Glycine max). The FAD3 enzyme is responsible for the synthesis of α-linolenic acids (18:3) in the polyunsaturated fatty acid pathway. It is this fatty acid that contributes mostly to the instability of soybean and other seed oils. Therefore, a significant reduction of this fatty acid will increase the stability of the seed oil, enhancing the seed agronomical value. A conserved nucleotide sequence, 318-nt in length, common to the three gene family members was used as an inverted repeat for RNA interference. The RNAi expression cassette was driven by a seed-specific promoter. We show that the transgene-produced siRNA caused silencing of FAD3 that was comparable to the fad3 mutant phenotype and, furthermore, that such a silencing is stably inherited in engineered soybean lines. Since the pool size of the α-linolenic acids is small relative to the other polyunsaturated fatty acids in soybean, the significant reduction of this fatty acid suggests a role and great potential for the siRNA strategy in silencing gene families in a complex genome.


Theoretical and Applied Genetics | 2005

Identification of QTLs associated with resistance to soybean cyst nematode races 2, 3 and 5 in soybean PI 90763

B. Guo; D. A. Sleper; Prakash R. Arelli; J. G. Shannon; Henry T. Nguyen

Soybean cyst nematode (SCN) is a major soybean pest throughout the soybean growing regions in the world, including the USA. Soybean PI 90763 is an important SCN resistance source. It is resistant to several SCN populations including races 2, 3 and 5. But its genetics of resistance is not well known. The objectives of this study were to: (1) confirm quantitative trait loci (QTLs) for resistance to SCN race 3 in PI 90763 and (2) identify QTLs for resistance to SCN races 2 and 5. QTLs were searched in Hamilton × PI 90763 F2:3populations using 193 polymorphic simple sequence repeats (SSRs) covering 20 linkage groups (LGs). QTLs for resistance to SCN were identified on LGs A2, B1, E, G, J and L. The same QTL was suggested for resistance to different SCN races where their 1-LOD support intervals of QTL positions highly overlapped. The QTL on LG G was associated with resistance to races 2, 3 and 5. The QTL on LG B1 was associated with resistance to races 2 and 5. The QTL on LG J was associated with resistance to races 2 and 3. The QTLs on LGs A2 and L were associated with resistance to race 3. The QTL on LG E was associated with resistance to race 5. We conclude that LGs A2 and B1 may represent an important distinction between resistance to SCN race 3 and resistance to SCN races 2 and 5 in soybean.


Theoretical and Applied Genetics | 1994

Phylogeny of tall fescue and related species using RFLPs.

W. W. Xu; D. A. Sleper

The wild species of tall fescue (Festuca arundinacea var.genuina Schreb.) represent a wide range of genetic variation and constitute potential germplasm for tall fescue improvement. Our objective was to evaluate genome specificity of the previously-identified DNA probes and to examine the phylogenetic relationship of tall fescue with six related species by using RFLP data. A total of 29 DNA probes from aPstI-genomic library of tall fescue were hybridized toEcoRI-orHindIII-digested DNA of 32 plants from sixFestuca species and fromLolium perenne L. Fifteen probes hybridized to all seven species. The remaining 14 probes showed differential hybridization patterns (i.e., ±), especially at the diploid and tetraploid levels. This hybridization pattern reflected genome divergence in these species. The DNA probes will be useful markers in breeding programs involving interspecific and intergeneric hybridization. Cluster analyses were performed using the average genetic distances calculated with the RFLP data from 53 probe-enzyme combinations. Generally, genotypes from the same species were grouped in the same cluster. These data indicated that tall fescue has a close relationship withF. pratensis Huds. (diploid),F. arundinacea var.glaucescens Boiss. (tetraploid), andL. perenne L. (diploid) and thatFestuca pratensis andL. perenne had the closest degree of relationship.


Theoretical and Applied Genetics | 2009

Genetic control of soybean seed isoflavone content: importance of statistical model and epistasis in complex traits

Juan J. Gutierrez-Gonzalez; Xiaolei Wu; Juan Zhang; Jeong Dong Lee; Mark R. Ellersieck; J. Grover Shannon; Oliver Yu; Henry T. Nguyen; D. A. Sleper

A major objective for geneticists is to decipher genetic architecture of traits associated with agronomic importance. However, a majority of such traits are complex, and their genetic dissection has been traditionally hampered not only by the number of minor-effect quantitative trait loci (QTL) but also by genome-wide interacting loci with little or no individual effect. Soybean (Glycine max [L.] Merr.) seed isoflavonoids display a broad range of variation, even in genetically stabilized lines that grow in a fixed environment, because their synthesis and accumulation are affected by many biotic and abiotic factors. Due to this complexity, isoflavone QTL mapping has often produced conflicting results especially with variable growing conditions. Herein, we comparatively mapped soybean seed isoflavones genistein, daidzein, and glycitein by using several of the most commonly used mapping approaches: interval mapping, composite interval mapping, multiple interval mapping and a mixed-model based composite interval mapping. In total, 26 QTLs, including many novel regions, were found bearing additive main effects in a population of RILs derived from the cross between Essex and PI 437654. Our comparative approach demonstrates that statistical mapping methodologies are crucial for QTL discovery in complex traits. Despite a previous understanding of the influence of additive QTL on isoflavone production, the role of epistasis is not well established. Results indicate that epistasis, although largely dependent on the environment, is a very important genetic component underlying seed isoflavone content, and suggest epistasis as a key factor causing the observed phenotypic variability of these traits in diverse environments.


BMC Plant Biology | 2010

Intricate environment-modulated genetic networks control isoflavone accumulation in soybean seeds

Juan J. Gutierrez-Gonzalez; Xiaolei Wu; Jason D. Gillman; Jeong Dong Lee; Rui Zhong; Oliver Yu; Grover Shannon; Mark R. Ellersieck; Henry T. Nguyen; D. A. Sleper

BackgroundSoybean (Glycine max [L] Merr.) seed isoflavones have long been considered a desirable trait to target in selection programs for their contribution to human health and plant defense systems. However, attempts to modify seed isoflavone contents have not always produced the expected results because their genetic basis is polygenic and complex. Undoubtedly, the extreme variability that seed isoflavones display over environments has obscured our understanding of the genetics involved.ResultsIn this study, a mapping population of RILs with three replicates was analyzed in four different environments (two locations over two years). We found a total of thirty-five main-effect genomic regions and many epistatic interactions controlling genistein, daidzein, glycitein and total isoflavone accumulation in seeds. The use of distinct environments permitted detection of a great number of environment-modulated and minor-effect QTL. Our findings suggest that isoflavone seed concentration is controlled by a complex network of multiple minor-effect loci interconnected by a dense epistatic map of interactions. The magnitude and significance of the effects of many of the nodes and connections in the network varied depending on the environmental conditions. In an attempt to unravel the genetic architecture underlying the traits studied, we searched on a genome-wide scale for genomic regions homologous to the most important identified isoflavone biosynthetic genes. We identified putative candidate genes for several of the main-effect and epistatic QTL and for QTL reported by other groups.ConclusionsTo better understand the underlying genetics of isoflavone accumulation, we performed a large scale analysis to identify genomic regions associated with isoflavone concentrations. We not only identified a number of such regions, but also found that they can interact with one another and with the environment to form a complex adaptable network controlling seed isoflavone levels. We also found putative candidate genes in several regions and overall we advanced the knowledge of the genetics underlying isoflavone synthesis.


Theoretical and Applied Genetics | 1995

Genome mapping of polyploid tall fescue (Festuca arundinacea Schreb.) with RFLP markers

W. W. Xu; D. A. Sleper; S. Chao

Genetic mapping using molecular markers such as restriction fragment length polymorphisms (RFLPs) has become a powerful tool for plant geneticists and breeders. Like many economically important polyploid plant species, detailed genetic studies of hexaploid tall fescue (Festuca arundinacea Schreb.) are complicated, and no genetic map has been established. We report here the first tall fescue genetic map. This map was generated from an F2 population of HD28-56 by ‘Kentucky-31’ and contains 108 RFLP markers. Although the two parental plants were heterozygous, the perennial and tillering growth habit, high degree of RFLP, and disomic inheritance of tall fescue enabled us to identify the segregating homologous alleles. The map covers 1274 cM on 19 linkage groups with an average of 5 loci per linkage group (LG) and 17.9 cM between loci. Mapping the homoeologous loci detected by the same probe allowed us to identify five homoeologous groups within which the gene orders were found to be generally conserved among homoeologous chromosomes. An exception was homoeologous group 5, in which only 2 of the 3 homoeologous chromosomes were identified. Using 12 genome-specific probes, we were able to assign several linkage groups to one of the three genomes (PG1G2) in tall fescue. All the loci detected by the 11 probes specific to the G1 and/or G2 genomes, with one exception, identified loci located on 4 chromosomes of two homoeologous groups (LG2a, LG2c, LG3a, and LG3c). A P-genome-specific probe was used to map a locus on LG5c. Comparative genome mapping with maize probes indicated that homoeologous group 3 and 2 chromosomes in tall fescue corresponded to maize chromosome 1. Difficulties and advantages of applying RFLP technology in polyploids with high levels of heterozygosity are discussed.

Collaboration


Dive into the D. A. Sleper's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Prakash R. Arelli

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeong Dong Lee

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S.C. Anand

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge