Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Prakash R. Arelli is active.

Publication


Featured researches published by Prakash R. Arelli.


Theoretical and Applied Genetics | 2005

Identification of QTLs associated with resistance to soybean cyst nematode races 2, 3 and 5 in soybean PI 90763

B. Guo; D. A. Sleper; Prakash R. Arelli; J. G. Shannon; Henry T. Nguyen

Soybean cyst nematode (SCN) is a major soybean pest throughout the soybean growing regions in the world, including the USA. Soybean PI 90763 is an important SCN resistance source. It is resistant to several SCN populations including races 2, 3 and 5. But its genetics of resistance is not well known. The objectives of this study were to: (1) confirm quantitative trait loci (QTLs) for resistance to SCN race 3 in PI 90763 and (2) identify QTLs for resistance to SCN races 2 and 5. QTLs were searched in Hamilton × PI 90763 F2:3populations using 193 polymorphic simple sequence repeats (SSRs) covering 20 linkage groups (LGs). QTLs for resistance to SCN were identified on LGs A2, B1, E, G, J and L. The same QTL was suggested for resistance to different SCN races where their 1-LOD support intervals of QTL positions highly overlapped. The QTL on LG G was associated with resistance to races 2, 3 and 5. The QTL on LG B1 was associated with resistance to races 2 and 5. The QTL on LG J was associated with resistance to races 2 and 3. The QTLs on LGs A2 and L were associated with resistance to race 3. The QTL on LG E was associated with resistance to race 5. We conclude that LGs A2 and B1 may represent an important distinction between resistance to SCN race 3 and resistance to SCN races 2 and 5 in soybean.


Theoretical and Applied Genetics | 2011

Gene expression profiling of resistant and susceptible soybean lines infected with soybean cyst nematode

Mitra Mazarei; Wusheng Liu; Hani Al-Ahmad; Prakash R. Arelli; Vincent R. Pantalone; C. Neal Stewart

Soybean cyst nematode (SCN) is the most devastating pathogen of soybean. Information about the molecular basis of soybean–SCN interactions is needed to assist future development of effective management tools against this pathogen. Toward this end, soybean transcript abundance was measured using the Affymetrix Soybean Genome Array in a susceptible and a resistant reaction of soybean to SCN infection. Two genetically related soybean sister lines TN02-226 and TN02-275, which are resistant and susceptible, respectively, to the SCN race 2 infection were utilized in these experiments. Pairwise comparisons followed by false discovery rate analysis indicated that the expression levels of 162 transcripts changed significantly in the resistant line, of which 84 increased while 78 decreased. However, in the susceptible line, 1,694 transcripts changed significantly, of which 674 increased while 1,020 decreased. Comparative analyses of these transcripts indicated that a total of 51 transcripts were in common between resistance and susceptible responses. In this set, 42 transcripts increased in the resistant line, but decreased in the susceptible line. Quantitative real-time reverse-transcription polymerase chain reaction confirmed the results of microarray analysis. Of the transcripts to which a function could be assigned, genes were associated with metabolism, cell wall modification, signal transduction, transcription, and defense. Microarray analyses examining two genetically related soybean lines against the same SCN population provided additional insights into the specific changes in gene expression of a susceptible and a resistant reaction beneficial for identification of genes involved in defense.


BMC Genomics | 2015

SNP identification and marker assay development for high-throughput selection of soybean cyst nematode resistance

Zi Shi; Shiming Liu; James P. Noe; Prakash R. Arelli; Khalid Meksem; Zenglu Li

BackgroundSoybean cyst nematode (SCN) is the most economically devastating pathogen of soybean. Two resistance loci, Rhg1 and Rhg4 primarily contribute resistance to SCN race 3 in soybean. Peking and PI 88788 are the two major sources of SCN resistance with Peking requiring both Rhg1 and Rhg4 alleles and PI 88788 only the Rhg1 allele. Although simple sequence repeat (SSR) markers have been reported for both loci, they are linked markers and limited to be applied in breeding programs due to accuracy, throughput and cost of detection methods. The objectives of this study were to develop robust functional marker assays for high-throughput selection of SCN resistance and to differentiate the sources of resistance.ResultsBased on the genomic DNA sequences of 27 soybean lines with known SCN phenotypes, we have developed Kompetitive Allele Specific PCR (KASP) assays for two Single nucleotide polymorphisms (SNPs) from Glyma08g11490 for the selection of the Rhg4 resistance allele. Moreover, the genomic DNA of Glyma18g02590 at the Rhg1 locus from 11 soybean lines and cDNA of Forrest, Essex, Williams 82 and PI 88788 were fully sequenced. Pairwise sequence alignment revealed seven SNPs/insertion/deletions (InDels), five in the 6th exon and two in the last exon. Using the same 27 soybean lines, we identified one SNP that can be used to select the Rhg1 resistance allele and another SNP that can be employed to differentiate Peking and PI 88788-type resistance. These SNP markers have been validated and a strong correlation was observed between the SNP genotypes and reactions to SCN race 3 using a panel of 153 soybean lines, as well as a bi-parental population, F5–derived recombinant inbred lines (RILs) from G00-3213 x LG04-6000.ConclusionsThree functional SNP markers (two for Rhg1 locus and one for Rhg4 locus) were identified that could provide genotype information for the selection of SCN resistance and differentiate Peking from PI 88788 source for most germplasm lines. The robust KASP SNP marker assays were developed. In most contexts, use of one or two of these markers is sufficient for high-throughput marker-assisted selection of plants that will exhibit SCN resistance.


Genome | 2006

Molecular marker diversity of SCN-resistant sources in soybean.

Yiwu Chen; Dechun Wang; Prakash R. Arelli; Mohsen Ebrahimi; Randall L. Nelson

Soybean cyst nematode (SCN) (Heterodera glycines Ichinohe; HG) is one of the most destructive pests of soybean (Glycine max (L.) Merr.) in the United States. Over 100 SCN-resistant accessions within the USDA Soybean Germplasm Collection have been identified, but little is known about the genetic diversity of this SCN-resistant germplasm. The objective of this research was to evaluate the genetic variation and determine the genetic relationships among SCN-resistant accessions. One hundred twenty-two genotypes were evaluated by 85 simple sequence repeat (SSR) markers from 20 linkage groups. Non-hierarchical (VARCLUS) and hierarchical (Wards) clustering were combined with multidimensional scaling (MDS) to determine relationships among tested lines. The 85 SSR markers produced 566 allelic fragments with a mean polymorphic information content (PIC) value of 0.35. The 122 lines were grouped into 7 clusters by 2 different clustering methods and the MDS results consistently corresponded to the assigned clusters. Assigned clusters were dominated by genotypes that possess one or more unique SCN resistance genes and were associated with geographical origins. The results of analysis of molecular variance (AMOVA) showed that the variation differences among clusters and individual lines were significant, but the differences among individuals within clusters were not significant.


BMC Genomics | 2012

The receptor like kinase at Rhg1-a/Rfs2 caused pleiotropic resistance to sudden death syndrome and soybean cyst nematode as a transgene by altering signaling responses

Ali Srour; Ahmed J. Afzal; Laureen Blahut-Beatty; Naghmeh Hemmati; Daina H. Simmonds; Wenbin Li; Miao Liu; Christopher D. Town; Hemlata Sharma; Prakash R. Arelli; David A. Lightfoot

BackgroundSoybean (Glycine max (L. Merr.)) resistance to any population of Heterodera glycines (I.), or Fusarium virguliforme (Akoi, O’Donnell, Homma & Lattanzi) required a functional allele at Rhg1/Rfs2. H. glycines, the soybean cyst nematode (SCN) was an ancient, endemic, pest of soybean whereas F. virguliforme causal agent of sudden death syndrome (SDS), was a recent, regional, pest. This study examined the role of a receptor like kinase (RLK) GmRLK18-1 (gene model Glyma_18_02680 at 1,071 kbp on chromosome 18 of the genome sequence) within the Rhg1/Rfs2 locus in causing resistance to SCN and SDS.ResultsA BAC (B73p06) encompassing the Rhg1/Rfs2 locus was sequenced from a resistant cultivar and compared to the sequences of two susceptible cultivars from which 800 SNPs were found. Sequence alignments inferred that the resistance allele was an introgressed region of about 59 kbp at the center of which the GmRLK18-1 was the most polymorphic gene and encoded protein. Analyses were made of plants that were either heterozygous at, or transgenic (and so hemizygous at a new location) with, the resistance allele of GmRLK18-1. Those plants infested with either H. glycines or F. virguliforme showed that the allele for resistance was dominant. In the absence of Rhg4 the GmRLK18-1 was sufficient to confer nearly complete resistance to both root and leaf symptoms of SDS caused by F. virguliforme and provided partial resistance to three different populations of nematodes (mature female cysts were reduced by 30–50%). In the presence of Rhg4 the plants with the transgene were nearly classed as fully resistant to SCN (females reduced to 11% of the susceptible control) as well as SDS. A reduction in the rate of early seedling root development was also shown to be caused by the resistance allele of the GmRLK18-1. Field trials of transgenic plants showed an increase in foliar susceptibility to insect herbivory.ConclusionsThe inference that soybean has adapted part of an existing pathogen recognition and defense cascade (H.glycines; SCN and insect herbivory) to a new pathogen (F. virguliforme; SDS) has broad implications for crop improvement. Stable resistance to many pathogens might be achieved by manipulation the genes encoding a small number of pathogen recognition proteins.


Plant Biotechnology Journal | 2013

Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode

Jingyu Lin; Mitra Mazarei; Nan Zhao; Junwei J. Zhu; Xiaofeng Zhuang; Wusheng Liu; Vincent R. Pantalone; Prakash R. Arelli; Charles Neal Stewart; Feng Chen

Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in soybean defence against soybean cyst nematode (Heterodera glycines Ichinohe, SCN). GmSAMT1 was identified as a candidate SCN defence-related gene in our previous analysis of soybean defence against SCN using GeneChip microarray experiments. The current study started with the isolation of the full-length cDNAs of GmSAMT1 from a SCN-resistant soybean line and from a SCN-susceptible soybean line. The two cDNAs encode proteins of identical sequences. The GmSAMT1 cDNA was expressed in Escherichia coli. Using in vitro enzyme assays, E. coli-expressed GmSAMT1 was confirmed to function as salicylic acid methyltransferase. The apparent Km value of GmSAMT1 for salicylic acid was approximately 46 μM. To determine the role of GmSAMT1 in soybean defence against SCN, transgenic hairy roots overexpressing GmSAMT1 were produced and tested for SCN resistance. Overexpression of GmSAMT1 in SCN-susceptible backgrounds significantly reduced the development of SCN, indicating that overexpression of GmSAMT1 in the transgenic hairy root system could confer resistance to SCN. Overexpression of GmSAMT1 in transgenic hairy roots was also found to affect the expression of selected genes involved in salicylic acid biosynthesis and salicylic acid signal transduction.


Plant Biotechnology Journal | 2014

Computational discovery of soybean promoter cis‐regulatory elements for the construction of soybean cyst nematode‐inducible synthetic promoters

Wusheng Liu; Mitra Mazarei; Yanhui Peng; Michael H. Fethe; Mary R. Rudis; Jingyu Lin; Reginald J. Millwood; Prakash R. Arelli; Charles Neal Stewart

Computational methods offer great hope but limited accuracy in the prediction of functional cis-regulatory elements; improvements are needed to enable synthetic promoter design. We applied an ensemble strategy for de novo soybean cyst nematode (SCN)-inducible motif discovery among promoters of 18 co-expressed soybean genes that were selected from six reported microarray studies involving a compatible soybean-SCN interaction. A total of 116 overlapping motif regions (OMRs) were discovered bioinformatically that were identified by at least four out of seven bioinformatic tools. Using synthetic promoters, the inducibility of each OMR or motif itself was evaluated by co-localization of gain of function of an orange fluorescent protein reporter and the presence of SCN in transgenic soybean hairy roots. Among 16 OMRs detected from two experimentally confirmed SCN-inducible promoters, 11 OMRs (i.e. 68.75%) were experimentally confirmed to be SCN-inducible, leading to the discovery of 23 core motifs of 5- to 7-bp length, of which 14 are novel in plants. We found that a combination of the three best tools (i.e. SCOPE, W-AlignACE and Weeder) could detect all 23 core motifs. Thus, this strategy is a high-throughput approach for de novo motif discovery in soybean and offers great potential for novel motif discovery and synthetic promoter engineering for any plant and trait in crop biotechnology.


Theoretical and Applied Genetics | 2006

Pooled analysis of data from multiple quantitative trait locus mapping populations

B. Guo; D. A. Sleper; Jianguo Sun; Henry T. Nguyen; Prakash R. Arelli; J. G. Shannon

Quantitative trait locus (QTL) analysis on pooled data from multiple populations (pooled analysis) provides a means for evaluating, as a whole, evidence for existence of a QTL from different studies and examining differences in gene effect of a QTL among different populations. Objectives of this study were to: (1) develop a method for pooled analysis and (2) conduct pooled analysis on data from two soybean mapping populations. Least square interval mapping was extended for pooled analysis by inclusion of populations and cofactor markers as indicator variables and covariate variables separately in the multiple linear models. The general linear test approach was applied for detecting a QTL. Single population-based and pooled analyses were conducted on data from two F2:3 mapping populations, Hamilton (susceptible) × PI 90763 (resistant) and Magellan (susceptible) × PI 404198A (resistant), for resistance to soybean cyst nematode (SCN) in soybean. It was demonstrated that where a QTL was shared among populations, pooled analysis showed increased LOD values on the QTL candidate region over single population analyses. Where a QTL was not shared among populations, however, the pooled analysis showed decreased LOD values on the QTL candidate region over single population analyses. Pooled analysis on data from genetically similar populations may have higher power of QTL detection than single population-based analyses. QTLs were identified by pooled analysis on linkage groups (LGs) G, B1 and J for resistance to SCN race 2 whereas QTLs on LGs G, B1 and E for resistance to SCN race 5 in soybean PI 90763 and PI 404198A. QTLs on LG G and B1 were identified in both PI 90763 and PI 404198A whereas QTLs on LG E and J were identified in PI 90763 only. QTLs on LGs G and B1 for resistance to race 2 may be the same or closely linked with QTLs on LG G and B1 for resistance to race 5, respectively. It was further demonstrated that QTLs on G and B1 carried by PI 90763 were not significantly different in gene effect from QTLs on LGs G and B1 in PI 404198A, respectively.


Euphytica | 2006

Genetics of Cyst Nematode Resistance in Soybean PIs 467312 and 507354

P. Lu; J. G. Shannon; D. A. Sleper; Henry T. Nguyen; S.R. Cianzio; Prakash R. Arelli

Soybean Cyst nematode (SCN) Heterodera glycines Ichinohe is the most serious pest of soybean [Glycine max (L.) Merr.] in the world and genetic resistance in soybean cultivars have been the most effective means of control. Nematode populations, however, are variable and have adapted to reproduce on resistant cultivars over time due mainly to the narrow genetic base of SCN resistance in G. max. The majority of the resistant cultivars trace to two soybean accessions. It is hoped that new sources of resistance might provide durable resistance. Soybean plant introductions PI 467312 and PI 507354, are unique because they provide resistance to several nematode populations, i.e. SCN HG types 0, 2.7, and 1.3.6.7 (corresponding to races 3, 5, and 14) and HG types 2.5.7, 0, and 2.7 (corresponding to races 1, 3, and 5), respectively. The genetic basis of SCN resistance in these PIs is not yet known. We have investigated the inheritance of resistance to SCN HG types 0, 2.7, and 1.3.6.7 (races 3, 5, and14) in PI467312 and the SCN resistance to SCN HG types 2.5.7 and 2.7 (races 1 and 5) in PI 507354. PI 467312 was crossed to ‘Marcus’, a susceptible cultivar to generate F1 hybrids, 196 random F2 individuals, and 196 F2:3 families (designated as Pop 467). PI 507354 and the cultivar Hutcheson, susceptible to all known SCN races, were crossed to generate F1 hybrids, 225 random F2 individuals and 225 F2:3 families (designated as Pop 507). The F2:3 families from each cross were evaluated for responses to the specific SCN HG types in the greenhouse. Chi-square (χ2) analyses showed resistance from PI 467312 to HG types 2.7, and 1.3.6.7 (races 5 and 14) in Pop 467 were conditioned by one dominant and two recessive genes (Rhg rhg rhg) and resistance to HG type 0 (race 3) was controlled by three recessive genes (rhg rhg rhg). The 225 F2:3 progenies in Pop 507 showed a segregation of 2:223 (R:S) for response to both HG types 2.5.7 and 2.7 (corresponding to races 1 and 5). The Chi-square analysis showed SCN resistance from PI 507354 fit a one dominant and 3 recessive gene model (Rhg rhg rhgrhg). This information will be useful to soybean breeders who use these sources to develop SCN resistant cultivars. The complex inheritance patterns determined for the two PIs are similar to the three and four gene models for other SCN resistance sources known to date.


Atlas Journal of Plant Biology | 2014

Quantitative Trait Loci (QTL) that Underlie SCN Resistance in Soybean (Glycine max (L.) Merr.) PI438489B by 'Hamilton' Re- combinant Inbred Line (RIL) Population

Kassem My Abdelmajid; Laura Ramos; David L. Hyten; J. P. Bond; Abdelhafid Bendahmane; Prakash R. Arelli; Victor Njiti; Silvia R. Cianzio; Stella K. Kantartzi; Khalid Meksem

1 Plant Genomics & Biotechnology Lab, Department of Biological Sciences, Fayetteville State University, Fayetteville, NC, USA; 2 Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA; 3 Soybean Genomics and Improvement Lab, 10300 Baltimore Ave, Bldg. 006, Rm. 201, Beltsville, MD 20705; 4 Unite de Recherche En Genomique Vegetale, INRA, Ivry, France; 5 USDA-ARS Midsouth Area, Jackson, TN, USA; 6 Department of Agriculture, Alcorn State University, Alcorn State, MS, USA; 7 Plant Pathology Department and Agronomy Department, Iowa State University, Ames, IA 50011-1010.

Collaboration


Dive into the Prakash R. Arelli's collaboration.

Top Co-Authors

Avatar

Alemu Mengistu

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Guo

University of Missouri

View shared research outputs
Top Co-Authors

Avatar

Jingyu Lin

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. P. Bond

Southern Illinois University Carbondale

View shared research outputs
Researchain Logo
Decentralizing Knowledge