Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. G. Shannon is active.

Publication


Featured researches published by J. G. Shannon.


Theoretical and Applied Genetics | 2005

Identification of QTLs associated with resistance to soybean cyst nematode races 2, 3 and 5 in soybean PI 90763

B. Guo; D. A. Sleper; Prakash R. Arelli; J. G. Shannon; Henry T. Nguyen

Soybean cyst nematode (SCN) is a major soybean pest throughout the soybean growing regions in the world, including the USA. Soybean PI 90763 is an important SCN resistance source. It is resistant to several SCN populations including races 2, 3 and 5. But its genetics of resistance is not well known. The objectives of this study were to: (1) confirm quantitative trait loci (QTLs) for resistance to SCN race 3 in PI 90763 and (2) identify QTLs for resistance to SCN races 2 and 5. QTLs were searched in Hamilton × PI 90763 F2:3populations using 193 polymorphic simple sequence repeats (SSRs) covering 20 linkage groups (LGs). QTLs for resistance to SCN were identified on LGs A2, B1, E, G, J and L. The same QTL was suggested for resistance to different SCN races where their 1-LOD support intervals of QTL positions highly overlapped. The QTL on LG G was associated with resistance to races 2, 3 and 5. The QTL on LG B1 was associated with resistance to races 2 and 5. The QTL on LG J was associated with resistance to races 2 and 3. The QTLs on LGs A2 and L were associated with resistance to race 3. The QTL on LG E was associated with resistance to race 5. We conclude that LGs A2 and B1 may represent an important distinction between resistance to SCN race 3 and resistance to SCN races 2 and 5 in soybean.


BMC Genomics | 2015

Genetic architecture of cyst nematode resistance revealed by genome-wide association study in soybean

Tri D. Vuong; Humira Sonah; C. G. Meinhardt; Rupesh K. Deshmukh; Suhas Kadam; Randall L. Nelson; J. G. Shannon; Henry T. Nguyen

BackgroundBi-parental mapping populations have been commonly utilized to identify and characterize quantitative trait loci (QTL) controlling resistance to soybean cyst nematode (SCN, Heterodera glycines Ichinohe). Although this approach successfully mapped a large number of SCN resistance QTL, it captures only limited allelic diversity that exists in parental lines, and it also has limitations for genomic resolution. In this study, a genome-wide association study (GWAS) was performed using a diverse set of 553 soybean plant introductions (PIs) belonging to maturity groups from III to V to detect QTL/genes associated with SCN resistance to HG Type 0.ResultsOver 45,000 single nucleotide polymorphism (SNP) markers generated by the SoySNP50K iSelect BeadChip (http//www.soybase.org) were utilized for analysis. GWAS identified 14 loci distributed over different chromosomes comprising 60 SNPs significantly associated with SCN resistance. Results also confirmed six QTL that were previously mapped using bi-parental populations, including the rhg1 and Rhg4 loci. GWAS identified eight novel QTL, including QTL on chromosome 10, which we have previously mapped by using a bi-parental population. In addition to the known loci for four simple traits, such as seed coat color, flower color, pubescence color, and stem growth habit, two traits, like lodging and pod shattering, having moderately complex inheritance have been confirmed with great precision by GWAS.ConclusionsThe study showed that GWAS can be employed as an effective strategy for identifying complex traits in soybean and for narrowing GWAS-defined genomic regions, which facilitates positional cloning of the causal gene(s).


International Journal of Molecular Sciences | 2014

Expression of Root-Related Transcription Factors Associated with Flooding Tolerance of Soybean (Glycine max)

Babu Valliyodan; Van Toai Tt; Alves Jd; de Fátima P Goulart P; Jeong Dong Lee; Felix B. Fritschi; Rahman Ma; Islam R; J. G. Shannon; Henry T. Nguyen

Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs) associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of these genes will be necessary to reveal their potential to enhance flooding tolerance of soybean cultivars.


Theoretical and Applied Genetics | 2006

Pooled analysis of data from multiple quantitative trait locus mapping populations

B. Guo; D. A. Sleper; Jianguo Sun; Henry T. Nguyen; Prakash R. Arelli; J. G. Shannon

Quantitative trait locus (QTL) analysis on pooled data from multiple populations (pooled analysis) provides a means for evaluating, as a whole, evidence for existence of a QTL from different studies and examining differences in gene effect of a QTL among different populations. Objectives of this study were to: (1) develop a method for pooled analysis and (2) conduct pooled analysis on data from two soybean mapping populations. Least square interval mapping was extended for pooled analysis by inclusion of populations and cofactor markers as indicator variables and covariate variables separately in the multiple linear models. The general linear test approach was applied for detecting a QTL. Single population-based and pooled analyses were conducted on data from two F2:3 mapping populations, Hamilton (susceptible) × PI 90763 (resistant) and Magellan (susceptible) × PI 404198A (resistant), for resistance to soybean cyst nematode (SCN) in soybean. It was demonstrated that where a QTL was shared among populations, pooled analysis showed increased LOD values on the QTL candidate region over single population analyses. Where a QTL was not shared among populations, however, the pooled analysis showed decreased LOD values on the QTL candidate region over single population analyses. Pooled analysis on data from genetically similar populations may have higher power of QTL detection than single population-based analyses. QTLs were identified by pooled analysis on linkage groups (LGs) G, B1 and J for resistance to SCN race 2 whereas QTLs on LGs G, B1 and E for resistance to SCN race 5 in soybean PI 90763 and PI 404198A. QTLs on LG G and B1 were identified in both PI 90763 and PI 404198A whereas QTLs on LG E and J were identified in PI 90763 only. QTLs on LGs G and B1 for resistance to race 2 may be the same or closely linked with QTLs on LG G and B1 for resistance to race 5, respectively. It was further demonstrated that QTLs on G and B1 carried by PI 90763 were not significantly different in gene effect from QTLs on LGs G and B1 in PI 404198A, respectively.


Euphytica | 2006

Genetics of Cyst Nematode Resistance in Soybean PIs 467312 and 507354

P. Lu; J. G. Shannon; D. A. Sleper; Henry T. Nguyen; S.R. Cianzio; Prakash R. Arelli

Soybean Cyst nematode (SCN) Heterodera glycines Ichinohe is the most serious pest of soybean [Glycine max (L.) Merr.] in the world and genetic resistance in soybean cultivars have been the most effective means of control. Nematode populations, however, are variable and have adapted to reproduce on resistant cultivars over time due mainly to the narrow genetic base of SCN resistance in G. max. The majority of the resistant cultivars trace to two soybean accessions. It is hoped that new sources of resistance might provide durable resistance. Soybean plant introductions PI 467312 and PI 507354, are unique because they provide resistance to several nematode populations, i.e. SCN HG types 0, 2.7, and 1.3.6.7 (corresponding to races 3, 5, and 14) and HG types 2.5.7, 0, and 2.7 (corresponding to races 1, 3, and 5), respectively. The genetic basis of SCN resistance in these PIs is not yet known. We have investigated the inheritance of resistance to SCN HG types 0, 2.7, and 1.3.6.7 (races 3, 5, and14) in PI467312 and the SCN resistance to SCN HG types 2.5.7 and 2.7 (races 1 and 5) in PI 507354. PI 467312 was crossed to ‘Marcus’, a susceptible cultivar to generate F1 hybrids, 196 random F2 individuals, and 196 F2:3 families (designated as Pop 467). PI 507354 and the cultivar Hutcheson, susceptible to all known SCN races, were crossed to generate F1 hybrids, 225 random F2 individuals and 225 F2:3 families (designated as Pop 507). The F2:3 families from each cross were evaluated for responses to the specific SCN HG types in the greenhouse. Chi-square (χ2) analyses showed resistance from PI 467312 to HG types 2.7, and 1.3.6.7 (races 5 and 14) in Pop 467 were conditioned by one dominant and two recessive genes (Rhg rhg rhg) and resistance to HG type 0 (race 3) was controlled by three recessive genes (rhg rhg rhg). The 225 F2:3 progenies in Pop 507 showed a segregation of 2:223 (R:S) for response to both HG types 2.5.7 and 2.7 (corresponding to races 1 and 5). The Chi-square analysis showed SCN resistance from PI 507354 fit a one dominant and 3 recessive gene model (Rhg rhg rhgrhg). This information will be useful to soybean breeders who use these sources to develop SCN resistant cultivars. The complex inheritance patterns determined for the two PIs are similar to the three and four gene models for other SCN resistance sources known to date.


PLOS ONE | 2016

Molecular characterization of resistance to soybean rust (Phakopsora pachyrhizi Syd. & Syd.) in soybean cultivar DT 2000 (PI 635999)

Tri D. Vuong; David R. Walker; Binh T. Nguyen; Tuyet T. Nguyen; Hoan X. Dinh; David L. Hyten; Perry B. Cregan; D. A. Sleper; Jeong D. Lee; J. G. Shannon; Henry T. Nguyen

Resistance to soybean rust (SBR), caused by Phakopsora pachyrhizi Syd. & Syd., has been identified in many soybean germplasm accessions and is conferred by either dominant or recessive genes that have been mapped to six independent loci (Rpp1 –Rpp6), but No U.S. cultivars are resistant to SBR. The cultivar DT 2000 (PI 635999) has resistance to P. pachyrhizi isolates and field populations from the United States as well as Vietnam. A F6:7 recombinant inbred line (RIL) population derived from Williams 82 × DT 2000 was used to identify genomic regions associated with resistance to SBR in the field in Ha Noi, Vietnam, and in Quincy, Florida, in 2008. Bulked segregant analysis (BSA) was conducted using the soybean single nucleotide polymorphism (SNP) USLP 1.0 panel along with simple sequence repeat (SSR) markers to detect regions of the genome associated with resistance. BSA identified four BARC_SNP markers near the Rpp3 locus on chromosome (Chr.) 6. Genetic analysis identified an additional genomic region around the Rpp4 locus on Chr. 18 that was significantly associated with variation in the area under disease progress curve (AUDPC) values and sporulation in Vietnam. Molecular markers tightly linked to the DT 2000 resistance alleles on Chrs. 6 and 18 will be useful for marker-assisted selection and backcrossing in order to pyramid these genes with other available SBR resistance genes to develop new varieties with enhanced and durable resistance to SBR.


Crop Science | 2006

Stability of Fatty Acid Profile in Soybean Genotypes with Modified Seed Oil Composition

M. Oliva; J. G. Shannon; D. A. Sleper; Mark R. Ellersieck; Andrea J. Cardinal; Robert L. Paris; Jeong Dong Lee


Crop Science | 2006

QTLs Associated with Resistance to Soybean Cyst Nematode in Soybean: Meta-Analysis of QTL Locations

B. Guo; D. A. Sleper; P. Lu; J. G. Shannon; Henry T. Nguyen; Prakash R. Arelli


Theoretical and Applied Genetics | 2010

Novel quantitative trait loci for broad-based resistance to soybean cyst nematode (Heterodera glycines Ichinohe) in soybean PI 567516C

Tri D. Vuong; D. A. Sleper; J. G. Shannon; Henry T. Nguyen


Crop Science | 2006

Quantitative trait loci underlying resistance to three soybean cyst nematode populations in soybean PI 404198A

B. Guo; D. A. Sleper; Henry T. Nguyen; Prakash R. Arelli; J. G. Shannon

Collaboration


Dive into the J. G. Shannon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Prakash R. Arelli

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

S.C. Anand

University of Missouri

View shared research outputs
Top Co-Authors

Avatar

Tri D. Vuong

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar

Jeong Dong Lee

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

B. Guo

University of Missouri

View shared research outputs
Top Co-Authors

Avatar

P. Lu

University of Missouri

View shared research outputs
Top Co-Authors

Avatar

Xiaolei Wu

University of Missouri

View shared research outputs
Researchain Logo
Decentralizing Knowledge