D. Chichung Lie
University of Erlangen-Nuremberg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. Chichung Lie.
Learning & Memory | 2009
Sebastian Jessberger; Robert E. Clark; Nicola J. Broadbent; Gregory D. Clemenson; Antonella Consiglio; D. Chichung Lie; Larry R. Squire; Fred H. Gage
New granule cells are born throughout life in the dentate gyrus of the hippocampal formation. Given the fundamental role of the hippocampus in processes underlying certain forms of learning and memory, it has been speculated that newborn granule cells contribute to cognition. However, previous strategies aiming to causally link newborn neurons with hippocampal function used ablation strategies that were not exclusive to the hippocampus or that were associated with substantial side effects, such as inflammation. We here used a lentiviral approach to specifically block neurogenesis in the dentate gyrus of adult male rats by inhibiting WNT signaling, which is critically involved in the generation of newborn neurons, using a dominant-negative WNT (dnWNT). We found a level-dependent effect of adult neurogenesis on the long-term retention of spatial memory in the water maze task, as rats with substantially reduced levels of newborn neurons showed less preference for the target zone in probe trials >2 wk after acquisition compared with control rats. Furthermore, animals with strongly reduced levels of neurogenesis were impaired in a hippocampus-dependent object recognition task. Social transmission of food preference, a behavioral test that also depends on hippocampal function, was not affected by knockdown of neurogenesis. Here we identified a role for newborn neurons in distinct aspects of hippocampal function that will set the ground to further elucidate, using experimental and computational strategies, the mechanism by which newborn neurons contribute to behavior.
Nature | 2004
Yanhong Shi; D. Chichung Lie; Philippe Taupin; Kinichi Nakashima; Jasodhara Ray; Ruth T. Yu; Fred H. Gage; Ronald M. Evans
The finding of neurogenesis in the adult brain led to the discovery of adult neural stem cells. TLX was initially identified as an orphan nuclear receptor expressed in vertebrate forebrains and is highly expressed in the adult brain. The brains of TLX-null mice have been reported to have no obvious defects during embryogenesis; however, mature mice suffer from retinopathies, severe limbic defects, aggressiveness, reduced copulation and progressively violent behaviour. Here we show that TLX maintains adult neural stem cells in an undifferentiated, proliferative state. We show that TLX-expressing cells isolated by fluorescence-activated cell sorting (FACS) from adult brains can proliferate, self-renew and differentiate into all neural cell types in vitro. By contrast, TLX-null cells isolated from adult mutant brains fail to proliferate. Reintroducing TLX into FACS-sorted TLX-null cells rescues their ability to proliferate and to self-renew. In vivo, TLX mutant mice show a loss of cell proliferation and reduced labelling of nestin in neurogenic areas in the adult brain. TLX can silence glia-specific expression of the astrocyte marker GFAP in neural stem cells, suggesting that transcriptional repression may be crucial in maintaining the undifferentiated state of these cells.
Cell Stem Cell | 2010
Helena Mira; Zoraida Andreu; Hoonkyo Suh; D. Chichung Lie; Sebastian Jessberger; Antonella Consiglio; Juana San Emeterio; Rafael Hortigüela; María Ángeles Marqués-Torrejón; Kinichi Nakashima; Dilek Colak; Magdalena Götz; Isabel Fariñas; Fred H. Gage
Neural stem cells (NSCs) in the adult hippocampus divide infrequently, and the molecules that modulate their quiescence are largely unknown. Here, we show that bone morphogenetic protein (BMP) signaling is active in hippocampal NSCs, downstream of BMPR-IA. BMPs reversibly diminish proliferation of cultured NSCs while maintaining their undifferentiated state. In vivo, acute blockade of BMP signaling in the hippocampus by intracerebral infusion of Noggin first recruits quiescent NSCs into the cycle and increases neurogenesis; subsequently, it leads to decreased stem cell division and depletion of precursors and newborn neurons. Consistently, selective ablation of Bmpr1a in hippocampal NSCs, or inactivation of BMP canonical signaling in conditional Smad4 knockout mice, transiently enhances proliferation but later leads to a reduced number of precursors, thereby limiting neuronal birth. BMPs are therefore required to balance NSC quiescence/proliferation and to prevent loss of the stem cell activity that supports continuous neurogenesis in the mature hippocampus.
The Journal of Neuroscience | 2009
Ravi Jagasia; Kathrin Steib; Elisabeth Englberger; Sabine Herold; Theresa Faus-Kessler; Michael Saxe; Fred H. Gage; Hongjun Song; D. Chichung Lie
Survival and integration of new neurons in the hippocampal circuit are rate-limiting steps in adult hippocampal neurogenesis. Neuronal network activity is a major regulator of these processes, yet little is known about the respective downstream signaling pathways. Here, we investigate the role of cAMP response element-binding protein (CREB) signaling in adult hippocampal neurogenesis. CREB is activated in new granule neurons during a distinct developmental period. Loss of CREB function in a cell-autonomous manner impairs dendritic development, decreases the expression of the neurogenic transcription factor NeuroD and of the neuronal microtubule-associated protein, doublecortin (DCX), and compromises the survival of newborn neurons. In addition, GABA-mediated excitation regulates CREB activation at early developmental stages. Importantly, developmental defects after loss of GABA-mediated excitation can be compensated by enhanced CREB signaling. These results indicate that CREB signaling is a central pathway in adult hippocampal neurogenesis, regulating the development and survival of new hippocampal neurons downstream of GABA-mediated excitation.
Cell Stem Cell | 2010
Ruth Beckervordersandforth; Pratibha Tripathi; Jovica Ninkovic; Efil Bayam; Alexandra Lepier; Barbara Stempfhuber; Frank Kirchhoff; Johannes Hirrlinger; Anja Haslinger; D. Chichung Lie; Johannes Beckers; Bradley Yoder; Martin Irmler; Magdalena Götz
Until now, limitations in the ability to enrich adult NSCs (aNSCs) have hampered meaningful analysis of these cells at the transcriptome level. Here we show via a split-Cre technology that coincident activity of the hGFAP and prominin1 promoters is a hallmark of aNSCs in vivo. Sorting of cells from the adult mouse subependymal zone (SEZ) based on their expression of GFAP and prominin1 isolates all self-renewing, multipotent stem cells at high purity. Comparison of the transcriptome of these purified aNSCs to parenchymal nonneurogenic astrocytes and other SEZ cells reveals aNSC hallmarks, including neuronal lineage priming and the importance of cilia- and Ca-dependent signaling pathways. Inducible deletion of the ciliary protein IFT88 in aNSCs validates the role of ciliary function in aNSCs. Our work reveals candidate molecular regulators for unique features of aNSCs and facilitates future selective analysis of aNSCs in other functional contexts, such as aging and injury.
The Journal of Neuroscience | 2010
Oliver Ehm; Christian Göritz; Marcela Covic; Iris Schäffner; Tobias Schwarz; Esra Karaca; Bettina Kempkes; Elisabeth Kremmer; Frank W. Pfrieger; Lluis Espinosa; Anna Bigas; Claudio Giachino; Verdon Taylor; Jonas Frisén; D. Chichung Lie
The generation of new neurons from neural stem cells in the adult hippocampal dentate gyrus contributes to learning and mood regulation. To sustain hippocampal neurogenesis throughout life, maintenance of the neural stem cell pool has to be tightly controlled. We found that the Notch/RBPJκ-signaling pathway is highly active in neural stem cells of the adult mouse hippocampus. Conditional inactivation of RBPJκ in neural stem cells in vivo resulted in increased neuronal differentiation of neural stem cells in the adult hippocampus at an early time point and depletion of the Sox2-positive neural stem cell pool and suppression of hippocampal neurogenesis at a later time point. Moreover, RBPJκ-deficient neural stem cells displayed impaired self-renewal in vitro and loss of expression of the transcription factor Sox2. Interestingly, we found that Notch signaling increases Sox2 promoter activity and Sox2 expression in adult neural stem cells. In addition, activated Notch and RBPJκ were highly enriched on the Sox2 promoter in adult hippocampal neural stem cells, thus identifying Sox2 as a direct target of Notch/RBPJκ signaling. Finally, we found that overexpression of Sox2 can rescue the self-renewal defect in RBPJκ-deficient neural stem cells. These results identify RBPJκ-dependent pathways as essential regulators of adult neural stem cell maintenance and suggest that the actions of RBPJκ are, at least in part, mediated by control of Sox2 expression.
Cell Stem Cell | 2012
Marisa Karow; Rodrigo Vega Sánchez; Christian Schichor; Felipe Ortega; Christophe Heinrich; Sergio Gascón; Muhammad Amir Khan; D. Chichung Lie; Arianna Dellavalle; Giulio Cossu; Roland Goldbrunner; Magdalena Götz; Benedikt Berninger
Reprogramming of somatic cells into neurons provides a new approach toward cell-based therapy of neurodegenerative diseases. A major challenge for the translation of neuronal reprogramming into therapy is whether the adult human brain contains cell populations amenable to direct somatic cell conversion. Here we show that cells from the adult human cerebral cortex expressing pericyte hallmarks can be reprogrammed into neuronal cells by retrovirus-mediated coexpression of the transcription factors Sox2 and Mash1. These induced neuronal cells acquire the ability of repetitive action potential firing and serve as synaptic targets for other neurons, indicating their capability of integrating into neural networks. Genetic fate-mapping in mice expressing an inducible Cre recombinase under the tissue-nonspecific alkaline phosphatase promoter corroborated the pericytic origin of the reprogrammed cells. Our results raise the possibility of functional conversion of endogenous cells in the adult human brain to induced neuronal fates.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Özlem Karalay; Kathrin Doberauer; Krishna C. Vadodaria; Marlen Knobloch; Lucia Berti; Amaya Miquelajauregui; Manuela Schwark; Ravi Jagasia; Makoto M. Taketo; Victor Tarabykin; D. Chichung Lie; Sebastian Jessberger
Neural stem cells (NSCs) generate new granule cells throughout life in the mammalian hippocampus. Canonical Wnt signaling regulates the differentiation of NSCs towards the neuronal lineage. Here we identified the prospero-related homeodomain transcription factor Prox1 as a target of β-catenin–TCF/LEF signaling in vitro and in vivo. Prox1 overexpression enhanced neuronal differentiation whereas shRNA-mediated knockdown of Prox1 impaired the generation of neurons in vitro and within the hippocampal niche. In contrast, Prox1 was not required for survival of adult-generated granule cells after they had matured, suggesting a role for Prox1 in initial granule cell differentiation but not in the maintenance of mature granule cells. The data presented here characterize a molecular pathway from Wnt signaling to a transcriptional target leading to granule cell differentiation within the adult brain and identify a stage-specific function for Prox1 in the process of adult neurogenesis.
Nature Cell Biology | 2013
Felipe Ortega; Sergio Gascón; Aditi Deshpande; Christiane Simon; Judith Fischer; Leda Dimou; D. Chichung Lie; Timm Schroeder; Benedikt Berninger
The adult mouse subependymal zone (SEZ) harbours adult neural stem cells (aNSCs) that give rise to neuronal and oligodendroglial progeny. However it is not known whether the same aNSC can give rise to neuronal and oligodendroglial progeny or whether these distinct progenies constitute entirely separate lineages. Continuous live imaging and single-cell tracking of aNSCs and their progeny isolated from the mouse SEZ revealed that aNSCs exclusively generate oligodendroglia or neurons, but never both within a single lineage. Moreover, activation of canonical Wnt signalling selectively stimulated proliferation within the oligodendrogliogenic lineage, resulting in a massive increase in oligodendrogliogenesis without changing lineage choice or proliferation within neurogenic clones. In vivo activation or inhibition of canonical Wnt signalling respectively increased or decreased the number of Olig2 and PDGFR- α positive cells, suggesting that this pathway contributes to the fine tuning of oligodendrogliogenesis in the adult SEZ.
European Journal of Neuroscience | 2011
Katharina Merz; Sabine Herold; D. Chichung Lie
The generation of new neurons in the adult brain is modulated by complex stimuli and a broad range of extrinsic signals. It remains a mystery how stem cells and their progeny integrate this wealth of regulatory input to generate a precise number of neurons that matches the physiological needs of the olfactory and hippocampal network. cAMP response element binding protein (CREB)‐dependent signalling is controlling essential developmental steps in adult neurogenesis, i.e. survival, maturation and integration of new neurons. Here, we summarize the current knowledge on the function of CREB in adult neurogenesis and discuss the potential of CREB to integrate complex stimuli and to translate these into precise developmental processes in adult neurogenesis. The complex modulation of CREB‐signalling may allow the adult neurogenic system to respond to stimuli in a fine‐tuned rather than in an on–off fashion.