Wolfgang Wurst
Technische Universität München
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wolfgang Wurst.
Cell | 2007
Irena Konstantinova; Ganka Nikolova; Mica Ohara-Imaizumi; Paolo Meda; Tomáš Kučera; Konstantinos Zarbalis; Wolfgang Wurst; Shinya Nagamatsu; Eckhard Lammert
In vertebrates, beta cells are aggregated in the form of pancreatic islets. Within these islets, communication between beta cells inhibits basal insulin secretion and enhances glucose-stimulated insulin secretion, thus contributing to glucose homeostasis during fasting and feeding. In the search for the underlying molecular mechanism, we have discovered that beta cells communicate via ephrin-As and EphAs. We provide evidence that ephrin-A5 is required for glucose-stimulated insulin secretion. We further show that EphA-ephrin-A-mediated beta cell communication is bidirectional: EphA forward signaling inhibits insulin secretion, whereas ephrin-A reverse signaling stimulates insulin secretion. EphA forward signaling is downregulated in response to glucose, which indicates that, under basal conditions, beta cells use EphA forward signaling to suppress insulin secretion and that, under stimulatory conditions, they shift to ephrin-A reverse signaling to enhance insulin secretion. Thus, we explain how beta cell communication in pancreatic islets conversely affects basal and glucose-stimulated insulin secretion to improve glucose homeostasis.
Nature Reviews Genetics | 2009
Johannes Beckers; Wolfgang Wurst; Martin Hrabé de Angelis
The mouse is the leading mammalian model organism for basic genetic research and for studying human diseases. Coordinated international projects are currently in progress to generate a comprehensive map of mouse gene functions — the first for any mammalian genome. There are still many challenges ahead to maximize the value of the mouse as a model, particularly for human disease. These involve generating mice that are better models of human diseases at the genotypic level, systemic (assessing all organ systems) and systematic (analysing all mouse lines) phenotyping of existing and new mouse mutant resources, and assessing the effects of the environment on phenotypes.
Neuron | 2009
Andrea Wizenmann; Isabelle Brunet; Joyce S.Y. Lam; Laure Sonnier; Marine Beurdeley; Konstantinos Zarbalis; Daniela Weisenhorn-Vogt; Christine Weinl; Asha Dwivedy; Alain Joliot; Wolfgang Wurst; Christine E. Holt; Alain Prochiantz
Engrailed transcription factors regulate the expression of guidance cues that pattern retinal axon terminals in the dorsal midbrain. They also act directly to guide axon growth in vitro. We show here that an extracellular En gradient exists in the tectum along the anterior-posterior axis. Neutralizing extracellular Engrailed in vivo with antibodies expressed in the tectum causes temporal axons to map aberrantly to the posterior tectum in chick and Xenopus. Furthermore, posterior membranes from wild-type tecta incubated with anti-Engrailed antibodies or posterior membranes from Engrailed-1 knockout mice exhibit diminished repulsive activity for temporal axons. Since EphrinAs play a major role in anterior-posterior mapping, we tested whether Engrailed cooperates with EphrinA5 in vitro. We find that Engrailed restores full repulsion to axons given subthreshold doses of EphrinA5. Collectively, our results indicate that extracellular Engrailed contributes to retinotectal mapping in vivo by modulating the sensitivity of growth cones to EphrinA.
Cell Metabolism | 2011
Jussi Pihlajamäki; Carles Lerin; Paula Itkonen; Tanner Boes; Thomas Floss; Joshua Schroeder; Farrell Dearie; Sarah Crunkhorn; Furkan Burak; Josep C. Jimenez-Chillaron; Tiina Kuulasmaa; Pekka Miettinen; Peter J. Park; Imad Nasser; Zhenwen Zhao; Zhaiyi Zhang; Yan Xu; Wolfgang Wurst; Hongmei Ren; Andrew J. Morris; Stefan Stamm; Allison B. Goldfine; Markku Laakso; Mary-Elizabeth Patti
Alternative mRNA splicing provides transcript diversity and may contribute to human disease. We demonstrate that expression of several genes regulating RNA processing is decreased in both liver and skeletal muscle of obese humans. We evaluated a representative splicing factor, SFRS10, downregulated in both obese human liver and muscle and in high-fat-fed mice, and determined metabolic impact of reduced expression. SFRS10-specific siRNA induces lipogenesis and lipid accumulation in hepatocytes. Moreover, Sfrs10 heterozygous mice have increased hepatic lipogenic gene expression, VLDL secretion, and plasma triglycerides. We demonstrate that LPIN1, a key regulator of lipid metabolism, is a splicing target of SFRS10; reduced SFRS10 favors the lipogenic β isoform of LPIN1. Importantly, LPIN1β-specific siRNA abolished lipogenic effects of decreased SFRS10 expression. Together, our results indicate that reduced expression of SFRS10, as observed in tissues from obese humans, alters LPIN1 splicing, induces lipogenesis, and therefore contributes to metabolic phenotypes associated with obesity.
Annual Review of Genetics | 2009
Steve D.M. Brown; Wolfgang Wurst; Ralf Kühn; John M. Hancock
The mouse is central to the goal of establishing a comprehensive functional annotation of the mammalian genome that will help elucidate various human disease genes and pathways. The mouse offers a unique combination of attributes, including an extensive genetic toolkit that underpins the creation and analysis of models of human disease. An international effort to generate mutations for every gene in the mouse genome is a first and essential step in this endeavor. However, the greater challenge will be the determination of the phenotype of every mutant. Large-scale phenotyping for genome-wide functional annotation presents numerous scientific, infrastructural, logistical, and informatics challenges. These include the use of standardized approaches to phenotyping procedures for the population of unified databases with comparable data sets. The ultimate goal is a comprehensive database of molecular interventions that allows us to create a framework for biological systems analysis in the mouse on which human biology and disease networks can be revealed.
Blood | 2011
Luisa de Andres-Aguayo; Florencio Varas; Eric M. Kallin; José F. Infante; Wolfgang Wurst; Thomas Floss; Thomas Graf
We used a retroviral integration screen to search for novel genes that regulate HSC function. One of the genes that conferred HSC dominance when overexpressed due to an adjacent retroviral insertion was Musashi 2 (Msi2), an RNA-binding protein that can act as a translational inhibitor. A gene-trap mouse model that inactivates the gene shows that Msi2 is more highly expressed in long-term (LT) and short-term (ST) HSCs, as well as in lymphoid myeloid primed progenitors (LMPPs), but much less in intermediate progenitors and mature cells. Mice lacking Msi2 are fully viable for up to a year or more, but exhibit severe defects in primitive precursors, most significantly a reduction in the number of ST-HSCs and LMPPs and a decrease in leukocyte numbers, effects that are exacerbated with age. Cell-cycle and gene-expression analyses suggest that the main hematopoietic defect in Msi2-defective mice is the decreased proliferation capacity of ST-HSCs and LMPPs. In addition, HSCs lacking Msi2 are severely impaired in competitive repopulation experiments, being overgrown by wild-type cells even when mutant cells were provided in excess. Our data indicate that Msi2 maintains the stem cell compartment mainly by regulating the proliferation of primitive progenitors downstream of LT-HSCs.
Mechanisms of Development | 2009
Ariadna Perez-Balaguer; Eduardo Puelles; Wolfgang Wurst; Salvador Martinez
Sonic hedgehog (Shh) is well known as the molecule responsible for the induction and maintenance of ventral neural tube structures. Recent data have shown that ventral neuronal populations react differentially to the amount of this morphogen not only in the spinal cord, but also in more rostral parts of the brain, like the midbrain. A dorsal expansion in the Shh expression domain modifies the differentiation program in this territory. The lack of Shh produces alterations in the development of this area as well. Here, for the first time, we analyze in detail the development of the different mesencephalic basal nuclei in the absence of Shh. We report that the oculomotor complex is lost, the dopaminergic populations are strongly affected but the red nucleus is maintained. These results point out that not all the midbrain neuronal populations are dependent on Shh for their maintenance, as previously thought. Based on our results and recently published data, we suggest the existence of a specific genetic pathway for the specification of the mesencephalic red nucleus. Foxa2 could be the candidate gene that might control this genetic pathway.
Cell | 2017
Irina Ingold; Carsten Berndt; Sabine Schmitt; Sebastian Doll; Gereon Poschmann; Katalin Buday; Antonella Roveri; Xiaoxiao Peng; Florêncio P. Freitas; Tobias Seibt; Lisa Mehr; Michaela Aichler; Axel Walch; Daniel Lamp; Martin Jastroch; Sayuri Miyamoto; Wolfgang Wurst; Fulvio Ursini; Elias S.J. Arnér; Noelia Fradejas-Villar; Ulrich Schweizer; Hans Zischka; José Pedro Friedmann Angeli; Marcus Conrad
Selenoproteins are rare proteins among all kingdoms of life containing the 21st amino acid, selenocysteine. Selenocysteine resembles cysteine, differing only byxa0the substitution of selenium for sulfur. Yet thexa0actual advantage of selenolate- versus thiolate-based catalysis has remained enigmatic, as most of the known selenoproteins also exist as cysteine-containing homologs. Here, we demonstrate that selenolate-based catalysis of the essential mammalian selenoprotein GPX4 is unexpectedly dispensable for normal embryogenesis. Yet the survival of a specific type of interneurons emerges to exclusively depend on selenocysteine-containing GPX4, thereby preventing fatal epileptic seizures. Mechanistically, selenocysteine utilization by GPX4 confers exquisitexa0resistance to irreversible overoxidation as cellsxa0expressing a cysteine variant are highly sensitive toward peroxide-induced ferroptosis. Remarkably, concomitant deletion of all selenoproteins in Gpx4cys/cys cells revealed that selenoproteins are dispensable for cell viability provided partial GPX4 activity is retained. Conclusively, 200 years after its discovery, a specific and indispensable role for selenium is provided.
The Journal of Comparative Neurology | 2012
Claudia Kühne; Oliver Puk; Jochen Graw; Martin Hrabě de Angelis; Günther Schütz; Wolfgang Wurst; Jan M. Deussing
The corticotropin‐releasing hormone (CRH) and its type 1 receptor (CRHR1) play a central role in coordinating the endocrine, autonomic, and behavioral responses to stress. A prerequisite to functionally dissect the complexity of the CRH/CRHR1 system is to unravel the identity of CRHR1‐expressing neurons and their connectivities. Therefore, we used a knockin approach to genetically label CRHR1‐expressing cells with a tau‐lacZ (tZ) reporter gene. The distribution of neurons expressing β‐galactosidase in the brain and the relative intensity of labeling is in full accordance with previously described Crhr1 mRNA expression. Combining the microtubule‐binding properties of TAU with the Cre‐loxP system allowed to direct the β‐galactosidase to proximal dendrites, and in particular to axons. Thereby, we were able to visualize projections of CRHR1 neurons such as glutamatergic and dopaminergic afferent connections of the striatum and GABAergic CRHR1‐expressing neurons located within its patch compartment. In addition, the tZ reporter gene revealed novel details of CRHR1 expression in the spinal cord, skin, and eye. CRHR1 expression in the retina prompted the identification of a new physiological role of CRHR1 related to the visual system. Besides its reporter properties, this novel CRHR1 allele comprises the possibility to conditionally restore or delete CRHR1 via Flp and Cre recombinase, respectively. Finally, the allele is suitable for further manipulations of the CRHR1 locus by recombinase‐mediated cassette exchange. Taken together, this novel mouse allele will significantly facilitate the neuroanatomical analysis of CRHR1 circuits and opens up new avenues to address CRHR1 function in more detail. J. Comp. Neurol., 520:3150–3180, 2012.
The EMBO Journal | 2010
Noriaki Shimokawa; Kaisa Haglund; Sabine M. Hölter; Caroline Grabbe; Vladimir Kirkin; Noriyuki Koibuchi; Christian Schultz; Jan Rozman; Daniela Hoeller; Chun Hong Qiu; Marina Londono; Jun Ikezawa; Peter Jedlicka; Birgit Stein; Stephan W. Schwarzacher; David P. Wolfer; Nicole Ehrhardt; Rainer Heuchel; Ioannis P. Nezis; Andreas Brech; Mirko H. H. Schmidt; Helmut Fuchs; V. Gailus-Durner; Martin Klingenspor; Oliver Bögler; Wolfgang Wurst; Thomas Deller; Martin Hrabé de Angelis; Ivan Dikic
Despite extensive investigations of Cbl‐interacting protein of 85 kDa (CIN85) in receptor trafficking and cytoskeletal dynamics, little is known about its functions in vivo. Here, we report the study of a mouse deficient of the two CIN85 isoforms expressed in the central nervous system, exposing a function of CIN85 in dopamine receptor endocytosis. Mice lacking CIN85 exon 2 (CIN85Δex2) show hyperactivity phenotypes, characterized by increased physical activity and exploratory behaviour. Interestingly, CIN85Δex2 animals display abnormally high levels of dopamine and D2 dopamine receptors (D2DRs) in the striatum, an important centre for the coordination of animal behaviour. Importantly, CIN85 localizes to the post‐synaptic compartment of striatal neurons in which it co‐clusters with D2DRs. Moreover, it interacts with endocytic regulators such as dynamin and endophilins in the striatum. Absence of striatal CIN85 causes insufficient complex formation of endophilins with D2DRs in the striatum and ultimately decreased D2DR endocytosis in striatal neurons in response to dopamine stimulation. These findings indicate an important function of CIN85 in the regulation of dopamine receptor functions and provide a molecular explanation for the hyperactive behaviour of CIN85Δex2 mice.