Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. He is active.

Publication


Featured researches published by D. He.


PLOS ONE | 2012

Progression of Cartilage Degradation, Bone Resorption and Pain in Rat Temporomandibular Joint Osteoarthritis Induced by Injection of Iodoacetate

Xue-Dong Wang; Xiao-Xing Kou; D. He; Min-Min Zeng; Zhen Meng; Rui-Yun Bi; Yan Liu; Jieni Zhang; Ye-Hua Gan; Y. Zhou

Background Osteoarthritis (OA) is an important subtype of temporomandibular disorders. A simple and reproducible animal model that mimics the histopathologic changes, both in the cartilage and subchondral bone, and clinical symptoms of temporomandibular joint osteoarthritis (TMJOA) would help in our understanding of its process and underlying mechanism. Objective To explore whether injection of monosodium iodoacetate (MIA) into the upper compartment of rat TMJ could induce OA-like lesions. Methods Female rats were injected with varied doses of MIA into the upper compartment and observed for up to 12 weeks. Histologic, radiographic, behavioral, and molecular changes in the TMJ were evaluated by light and electron microscopy, MicroCT scanning, head withdrawal threshold test, real-time PCR, immunohistochemistry, and TUNEL assay. Results The intermediate zone of the disc loosened by 1 day post-MIA injection and thinned thereafter. Injection of an MIA dose of 0.5 mg or higher induced typical OA-like lesions in the TMJ within 4 weeks. Condylar destruction presented in a time-dependent manner, including chondrocyte apoptosis in the early stages, subsequent cartilage matrix disorganization and subchondral bone erosion, fibrosis, subchondral bone sclerosis, and osteophyte formation in the late stages. Nociceptive responses increased in the early stages, corresponding to severe synovitis. Furthermore, chondrocyte apoptosis and an imbalance between anabolism and catabolism of cartilage and subchondral bone might account for the condylar destruction. Conclusions Multi-level data demonstrated a reliable and convenient rat model of TMJOA could be induced by MIA injection into the upper compartment. The model might facilitate TMJOA related researches.


Journal of Dental Research | 2015

Enhanced M1/M2 Macrophage Ratio Promotes Orthodontic Root Resorption

D. He; Xiao-Xing Kou; Q. Luo; R. Yang; D. Liu; Xinan Wang; Y. Song; H. Cao; M. Zeng; Y.H. Gan; Y. Zhou

Mechanical force–induced orthodontic root resorption is a major clinical challenge in orthodontic treatment. Macrophages play an important role in orthodontic root resorption, but the underlying mechanism remains unclear. In this study, we examined the mechanism by which the ratio of M1 to M2 macrophage polarization affects root resorption during orthodontic tooth movement. Root resorption occurred when nickel–titanium coil springs were applied on the upper first molars of rats for 3 to 14 d. Positively stained odontoclasts or osteoclasts with tartrate-resistant acid phosphatase were found in resorption areas. Meanwhile, M1-like macrophages positive for CD68 and inducible nitric oxide synthase (iNOS) persistently accumulated on the compression side of periodontal tissues. In addition, the expressions of the M1 activator interferon-γ and the M1-associated pro-inflammatory cytokine tumor necrosis factor (TNF)-α were upregulated on the compression side of periodontal tissues. When the coil springs were removed at the 14th day after orthodontic force application, root resorption was partially rescued. The number of CD68+CD163+ M2-like macrophages gradually increased on the compression side of periodontal tissues. The levels of M2 activator interleukin (IL)-4 and the M2-associated anti-inflammatory cytokine IL-10 also increased. Systemic injection of the TNF-α inhibitor etanercept or IL-4 attenuated the severity of root resorption and decreased the ratio of M1 to M2 macrophages. These data imply that the balance between M1 and M2 macrophages affects orthodontic root resorption. Root resorption was aggravated by an enhanced M1/M2 ratio but was partially rescued by a reduced M1/M2 ratio.


Journal of Dental Research | 2014

Force-induced Adrb2 in Periodontal Ligament Cells Promotes Tooth Movement

H. Cao; Xiao-Xing Kou; R. Yang; D. Liu; Xinan Wang; Y. Song; L. Feng; D. He; Y.H. Gan; Y. Zhou

The sympathetic nervous system (SNS) regulates bone resorption through β-2 adrenergic receptor (Adrb2). In orthodontic tooth movement (OTM), mechanical force induces and regulates alveolar bone remodeling. Compressive force-associated osteoclast differentiation and alveolar bone resorption are the rate-limiting steps of tooth movement. However, whether mechanical force can activate Adrb2 and thus contribute to OTM remains unknown. In this study, orthodontic nickel-titanium springs were applied to the upper first molars of rats and Adrb1/2-/- mice to confirm the role of SNS and Adrb2 in OTM. The results showed that blockage of SNS activity in the jawbones of rats by means of superior cervical ganglion ectomy reduced OTM distance from 860 to 540 μm after 14 d of force application. In addition, the injection of nonselective Adrb2 agonist isoproterenol activated the downstream signaling of SNS to accelerate OTM from 300 to 540 μm after 7 d of force application. Adrb1/2-/- mice showed significantly reduced OTM distance (19.5 μm) compared with the wild-type mice (107.6 μm) after 7 d of force application. Histopathologic analysis showed that the number of Adrb2-positive cells increased in the compressive region of periodontal ligament after orthodontic force was applied on rats. Mechanistically, mechanical compressive force upregulated Adrb2 expression in primary-cultured human periodontal ligament cells (PDLCs) through the elevation of intracellular Ca2+ concentration. Activation of Adrb2 in PDLCs increased the RANKL/OPG ratio and promoted the peripheral blood mononuclear cell differentiation to osteoclasts in the cocultured system. Upregulation of Adrb2 in PDLCs promoted osteoclastogenesis, which accelerated OTM through Adrb2-enhanced bone resorption. In summary, this study suggests that mechanical force-induced Adrb2 activation in PDLCs contributes to SNS-regulated OTM.


Journal of Immunology | 2015

Estradiol Promotes M1-like Macrophage Activation through Cadherin-11 To Aggravate Temporomandibular Joint Inflammation in Rats

Xiao-Xing Kou; Chen-Shuang Li; D. He; Xue-Dong Wang; Ting Hao; Zhen Meng; Y. Zhou; Ye-Hua Gan

Macrophages play a major role in joint inflammation. Estrogen is involved in rheumatoid arthritis and temporomandibular disorders. However, the underlying mechanism is still unclear. This study was done to verify and test how estrogen affects M1/M2-like macrophage polarization and then contributes to joint inflammation. Female rats were ovariectomized and treated with increasing doses of 17β-estradiol for 10 d and then intra-articularly injected with CFA to induce temporomandibular joint (TMJ) inflammation. The polarization of macrophages and expression of cadherin-11 was evaluated at 24 h after the induction of TMJ inflammation and after blocking cadherin-11 or estrogen receptors. NR8383 macrophages were treated with estradiol and TNF-α, with or without blocking cadherin-11 or estrogen receptors, to evaluate the expression of the M1/M2-like macrophage-associated genes. We found that estradiol increased the infiltration of macrophages with a proinflammatory M1-like predominant profile in the synovium of inflamed TMJ. In addition, estradiol dose-dependently upregulated the expressions of the M1-associated proinflammatory factor inducible NO synthase (iNOS) but repressed the expressions of the M2-associated genes IL-10 and arginase in NR8383 macrophages. Furthermore, estradiol mainly promoted cadherin-11 expression in M1-like macrophages of inflamed TMJ. By contrast, blockage of cadherin-11 concurrently reversed estradiol-potentiated M1-like macrophage activation and TMJ inflammation, as well as reversed TNF-α–induced induction of inducible NO synthase and NO in NR8383 macrophages. The blocking of estrogen receptors reversed estradiol-potentiated M1-like macrophage activation and cadherin-11 expression. These results suggested that estradiol could promote M1-like macrophage activation through cadherin-11 to aggravate the acute inflammation of TMJs.


Journal of Dental Research | 2015

M1-like Macrophage Polarization Promotes Orthodontic Tooth Movement:

D. He; Xiao-Xing Kou; R. Yang; D. Liu; Xinan Wang; Q. Luo; Y. Song; F. Liu; Y. Yan; Y.H. Gan; Y. Zhou

Macrophages play a crucial role in inflammatory-mediated bone loss. Orthodontic tooth movement (OTM) is associated with inflammatory bone remodeling. However, whether and how macrophages contribute to mechanical force–induced OTM remains unknown. In this study, we hypothesized that polarization of M1-like macrophages may contribute to the OTM. Orthodontic nickel-titanium springs were applied to the upper first molars of rats or mice to induce OTM. The distance of OTM gradually increased after mechanical force was applied to the rats for 5 and 10 d. M1-like macrophage polarization and expression of M1 cytokine tumor necrosis factor (TNF)-α also increased after force application. More importantly, monocyte/macrophage depletion in mice by injection of clodronate liposomes decreased the distance of OTM and the number of tartrate-resistant acid phosphatase (TRAP)–positive osteoclasts and CD68+ macrophages, accompanied by reduced expressions of M1 markers TNF-α and inducible nitric oxide synthase (iNOS), whereas systemic transfusion of M1 macrophages in mice increased them. Further experiments showed that injection of recombinant TNF-α increased the distance of OTM and the number of TRAP-positive osteoclasts and CD68+ macrophages, as well as upregulated the expression of TNF-α and iNOS. Blockage of TNF-α by etanercept injection reduced the distance of OTM and the number of TRAP-positive osteoclasts and CD68+ macrophages, as well as decreased the levels of TNF-α and iNOS. These data suggest that M1-like macrophage polarization promotes alveolar bone resorption and consequent OTM after mechanical force application.


Journal of Dental Research | 2015

T Cells Are Required for Orthodontic Tooth Movement

Y. Yan; F. Liu; Xiao-Xing Kou; D. Liu; R. Yang; Xinan Wang; Y. Song; D. He; Y.H. Gan; Y. Zhou

The immune system plays a pivotal role during bone remodeling process. Orthodontic tooth movement (OTM) induces local inflammation in periodontium, but whether systemic immune response is involved in OTM remains unknown. In this study, we show that tooth movement distance was significantly reduced in T-cell–deficient immunocompromised mice compared with wild-type (WT) mice. Intravenous infusion of allogeneic T cells to the immunocompromised mice rescued the OTM distance. Correspondingly, increased numbers of tartrate-resistant acid phosphatase (TRAP)–positive osteoclasts were detected around the alveolar bone after OTM in WT mice but were barely detected in immunocompromised mice. Moreover, intravenous infusion of T cells rescued the number of TRAP-positive osteoclasts in the OTM area of the immunocompromised mice, thus suggesting T cells are required for OTM. We then reveal that OTM induced a significant elevation of type 1 T helper cell (Th1) cytokines tumor necrosis factor–α (TNF-α) and interferon-γ (IFN-γ) around periodontal tissue in WT but not in immunocompromised mice. Infusion of T cells could increase the levels of TNF-α and IFN-γ in periodontal tissues of immunocompromised mice. More interestingly, intraperitoneal injection of TNF-α inhibitor etanercept significantly reduced the distance of OTM in T-cell–infused immunocompromised mice. In summary, this study demonstrates a previously unrecognized mechanism that T cells are required for OTM depending on Th1-associated cytokines.


Journal of Dental Research | 2015

Orthodontic Force Induces Systemic Inflammatory Monocyte Responses

M. Zeng; Xiao-Xing Kou; R. Yang; D. Liu; Xinan Wang; Y. Song; Jieni Zhang; Y. Yan; F. Liu; D. He; Y.H. Gan; Y. Zhou

Periodontal inflammation and alveolar bone remodeling during orthodontic tooth movement are considered regional reactions. However, how systemic immune responses are involved in this regional reaction remains unclear. In this study, we explored the systemic effects of orthodontic force by focusing on the mononuclear phagocyte system. Flow cytometric analysis showed that the percentage of inflammatory monocytes, in peripheral blood and in the monocyte reservoir spleen, decreased on days 1 and 3 and then recovered on day 7 after force application. Along with the systemic decrease of inflammatory monocyte percentage, the number of tartrate-resistant acid phosphatase–positive osteoclasts increased in the compression side of the periodontal tissue during orthodontic tooth movement. Systemic transfusion of enhanced green fluorescent protein–labeled inflammatory monocytes showed recruitment of these monocytes to the orthodontic force compression side of periodontal tissues. These monocytes were colocalized with tartrate-resistant acid phosphatase–positive osteoclasts. In vivo and in vitro experiments showed that orthodontic force could upregulate the expression of pivotal monocyte chemokine monocyte chemotactic protein 1 in periodontal tissues or cultured periodontal ligament cells, which may contribute to monocyte recruitment to regional sites. These data suggest that orthodontic force induces systemic immune responses related to inflammatory monocytes and that systemic inflammatory monocytes can be recruited to periodontal tissues by orthodontic force stimulus.


Journal of Dental Research | 2017

Force-Induced H2S by PDLSCs Modifies Osteoclastic Activity during Tooth Movement

F. Liu; F. Wen; D. He; D. Liu; R. Yang; Xinan Wang; Y. Yan; Yan Liu; Xiao-Xing Kou; Y. Zhou

Hydrogen sulfide (H2S), a gasotransmitter, has been recently linked to mesenchymal stem cell (MSC) function and bone homeostasis. Periodontal ligament stem cells (PDLSCs) are the main MSCs in PDL, which respond to mechanical force to induce physiological activities during orthodontic tooth movement (OTM). However, it is unknown whether mechanical force might induce endogenous H2S production by PDLSCs to regulate alveolar bone homeostasis. Here, we used a mouse OTM model to demonstrate that orthodontic force-induced endogenous H2S production in PDL tissue was associated with macrophage accumulation and osteoclastic activity in alveolar bone. Then, we showed that mechanical force application induced cystathionine β-synthase (CBS) expression and endogenous H2S production by PDLSCs. Moreover, blocking endogenous H2S or systemically increasing H2S levels could decrease or enhance force-induced osteoclastic activities to control tooth movement. We further revealed how force-induced H2S production by PDLSCs contributed to the secretion of monocyte chemoattractant protein-1 (MCP-1) and the expression of receptor activator of nuclear factor–κB ligand/osteoprotegerin (RANKL/OPG) system by PDLSCs. The secretion and expression of these factors controlled macrophage migration and osteoclast differentiation. This study demonstrated that PDLSCs produced H2S to respond to and transduce force signals. Force-induced gasotransmitter H2S production in PDLSCs therefore regulated osteoclastic activities in alveolar bone and controlled the OTM process through the MCP-1 secretion and RANKL/OPG system.


Journal of Dental Research | 2016

PDL Progenitor–Mediated PDL Recovery Contributes to Orthodontic Relapse

L. Feng; R. Yang; D. Liu; Xinan Wang; Y. Song; H. Cao; D. He; Y.H. Gan; Xiao-Xing Kou; Y. Zhou

Periodontal ligament (PDL) is subjected to mechanical force during physiologic activities. PDL stem/progenitor cells are the main mesenchymal stem cells in PDL. However, how PDL progenitors participate in PDL homeostasis upon and after mechanical force is largely unknown. In this study, force-triggered orthodontic tooth movement and the following relapse were used as models to demonstrate the response of PDL progenitors and their role in PDL remodeling upon and after mechanical force. Upon orthodontic force, PDL collagen on the compression side significantly degraded, showing a broken and disorganized pattern. After force withdrawal, the degraded PDL collagen recovered during the early stage of relapse. Correspondingly, increased CD90+ PDL progenitors with suppressed expression of type I collagen (Col-I) were observed upon orthodontic force, whereas these cells accumulated at the degradation regions and regained Col-I expression after force withdrawal during early relapse. Our results further showed that compressive force altered cell morphology and repressed collagen expression in cultured PDL progenitors, which both recovered after force withdrawal. Force withdrawal–induced recovery of collagen expression in cultured PDL progenitors could be regulated by transforming growth factor–β (TGF-β), a key molecule for tissue homeostasis and extracellular matrix remodeling. More interesting, inhibiting the regained Col-I expression in CD90+ PDL progenitors by blocking TGF-β interrupted PDL collagen recovery and partially inhibited the early relapse. These data suggest that PDL progenitors can respond to mechanical force and may process intrinsic stability to recover to original status after force withdrawal. PDL progenitors with intrinsic stability are required for PDL recovery and consequently contribute to early orthodontic relapse, which can be regulated by TGF-β signaling.


Angle Orthodontist | 2017

Cadherin-11 modulates cell morphology and collagen synthesis in periodontal ligament cells under mechanical stress

Lishu Feng; Yimei Zhang; Xiao-Xing Kou; R. Yang; Dawei Liu; Xue-Dong Wang; Y. Song; Haifeng Cao; D. He; Ye-Hua Gan; Yanheng Zhou

OBJECTIVE To examine the role of cadherin-11, an integral membrane adhesion molecule, in periodontal ligament cells (PDLCs) under mechanical stimulation. MATERIALS AND METHODS Human PDLCs were cultured and subjected to mechanical stress. Cadherin-11 expression and cell morphology of PDLCs were investigated via immunofluorescence staining. The mRNA and protein expressions of cadherin-11 and type I collagen (Col-I) of PDLCs were evaluated by quantitative real-time polymerase chain reaction and Western blot, respectively. Small interfering RNA was used to knock down cadherin-11 expression in PDLCs. The collagen matrix of PDLCs was examined using toluidine blue staining. RESULTS Cadherin-11 was expressed in PDLCs. Mechanical stress suppressed cadherin-11 expression in PDLCs with prolonged force treatment time and increased force intensity, accompanied by suppressed β-catenin expression. Simultaneously, mechanical stress altered cell morphology and repressed Col-I expression in a time- and dose-dependent manner in PDLCs. Moreover, knockdown of cadherin-11 with suppressed β-catenin expression resulted in altered PDLC morphology and repressed collagen expression, which were consistent with the changes observed under mechanical stress. CONCLUSIONS Results of this study suggest that cadherin-11 is expressed in PDLCs and modulates PDLC morphology and collagen synthesis in response to mechanical stress, which may play an important role in the homeostasis and remodeling of the PDL under mechanical stimulation.

Collaboration


Dive into the D. He's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge