Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Y.H. Gan is active.

Publication


Featured researches published by Y.H. Gan.


Journal of Dental Research | 2015

Current Understanding of Pathogenesis and Treatment of TMJ Osteoarthritis

Xian Wang; Jun Zhang; Y.H. Gan; Y. Zhou

Osteoarthritis is a common disease that can cause severe pain and dysfunction in any joint, including the temporomandibular joint (TMJ). TMJ osteoarthritis (TMJOA) is an important subtype in the classification of temporomandibular disorders. TMJOA pathology is characterized by progressive cartilage degradation, subchondral bone remodeling, and chronic inflammation in the synovial tissue. However, the exact pathogenesis and process of TMJOA remain to be understood. An increasing number of studies have recently focused on inflammation and remodeling of subchondral bone during the early stage of TMJOA, which may elucidate the possible mechanism of initiation and progression of TMJOA. The treatment strategy for TMJOA aims at relieving pain, preventing the progression of cartilage and subchondral bone destruction, and restoring joint function. Conservative therapy with nonsteroidal anti-inflammatory drugs, splint, and physical therapy, such as low-energy laser and arthrocentesis, are the most common treatments for TMJOA. These therapies are effective in most cases in relieving the signs and symptoms, but their long-term therapeutic effect on the pathologic articular structure is unsatisfactory. A treatment that can reverse the damage of TMJOA remains unavailable to date. Treatments that prevent the progression of cartilage degradation and subchondral bone damage should be explored, and regeneration for the TMJ may provide the ideal long-term solution. This review summarizes the current understanding of mechanisms underlying the pathogenesis and treatment of TMJOA.


Journal of Dental Research | 2012

Sustained Inflammation Induces Degeneration of the Temporomandibular Joint

Xian Wang; Xiao-Xing Kou; Jeremy J. Mao; Y.H. Gan; Y. Zhou

The temporomandibular joint (TMJ) undergoes degenerative changes among patients who suffer from arthritis, and yet the pathogenesis of TMJ osteoarthritis and rheumatoid arthritis is poorly understood. We hypothesized that sustained inflammation in the TMJ induces structural abnormalities, and accordingly characterized the disc and synovium in a novel model with double injections of complete Freund’s adjuvant (CFA), using behavioral, morphological, cellular, and molecular assessments. Thirty-five days following double CFA injections in seven-week-old female Sprague-Dawley rats, the disc in the CFA-induced inflammation group demonstrated multiple degenerative changes, including marked thickening, opacity, and deformation. The discs in the CFA group further showed significantly greater wet and net weights, and elevated collagen, aggrecan, and total glycosaminoglycan contents. The synovium in the CFA-induced inflammation group showed marked infiltration of mononucleated cells and accumulated sub-synovial adipose tissue. Both the disc and synovium had significantly higher iNOS and IL-1β mRNA expression than controls (saline injections). These findings are consistent with our hypothesis that sustained TMJ inflammation, even within the presently observed 35 days, may be a predisposing factor for structural abnormalities. Insight into TMJ inflammation and degeneration is anticipated to improve our understanding of the pathogenesis of TMJ arthritis and help design clinically relevant strategies for tissue engineering.


Journal of Dental Research | 2015

Enhanced M1/M2 Macrophage Ratio Promotes Orthodontic Root Resorption

D. He; Xiao-Xing Kou; Q. Luo; R. Yang; D. Liu; Xinan Wang; Y. Song; H. Cao; M. Zeng; Y.H. Gan; Y. Zhou

Mechanical force–induced orthodontic root resorption is a major clinical challenge in orthodontic treatment. Macrophages play an important role in orthodontic root resorption, but the underlying mechanism remains unclear. In this study, we examined the mechanism by which the ratio of M1 to M2 macrophage polarization affects root resorption during orthodontic tooth movement. Root resorption occurred when nickel–titanium coil springs were applied on the upper first molars of rats for 3 to 14 d. Positively stained odontoclasts or osteoclasts with tartrate-resistant acid phosphatase were found in resorption areas. Meanwhile, M1-like macrophages positive for CD68 and inducible nitric oxide synthase (iNOS) persistently accumulated on the compression side of periodontal tissues. In addition, the expressions of the M1 activator interferon-γ and the M1-associated pro-inflammatory cytokine tumor necrosis factor (TNF)-α were upregulated on the compression side of periodontal tissues. When the coil springs were removed at the 14th day after orthodontic force application, root resorption was partially rescued. The number of CD68+CD163+ M2-like macrophages gradually increased on the compression side of periodontal tissues. The levels of M2 activator interleukin (IL)-4 and the M2-associated anti-inflammatory cytokine IL-10 also increased. Systemic injection of the TNF-α inhibitor etanercept or IL-4 attenuated the severity of root resorption and decreased the ratio of M1 to M2 macrophages. These data imply that the balance between M1 and M2 macrophages affects orthodontic root resorption. Root resorption was aggravated by an enhanced M1/M2 ratio but was partially rescued by a reduced M1/M2 ratio.


Journal of Dental Research | 2014

Force-induced Adrb2 in Periodontal Ligament Cells Promotes Tooth Movement

H. Cao; Xiao-Xing Kou; R. Yang; D. Liu; Xinan Wang; Y. Song; L. Feng; D. He; Y.H. Gan; Y. Zhou

The sympathetic nervous system (SNS) regulates bone resorption through β-2 adrenergic receptor (Adrb2). In orthodontic tooth movement (OTM), mechanical force induces and regulates alveolar bone remodeling. Compressive force-associated osteoclast differentiation and alveolar bone resorption are the rate-limiting steps of tooth movement. However, whether mechanical force can activate Adrb2 and thus contribute to OTM remains unknown. In this study, orthodontic nickel-titanium springs were applied to the upper first molars of rats and Adrb1/2-/- mice to confirm the role of SNS and Adrb2 in OTM. The results showed that blockage of SNS activity in the jawbones of rats by means of superior cervical ganglion ectomy reduced OTM distance from 860 to 540 μm after 14 d of force application. In addition, the injection of nonselective Adrb2 agonist isoproterenol activated the downstream signaling of SNS to accelerate OTM from 300 to 540 μm after 7 d of force application. Adrb1/2-/- mice showed significantly reduced OTM distance (19.5 μm) compared with the wild-type mice (107.6 μm) after 7 d of force application. Histopathologic analysis showed that the number of Adrb2-positive cells increased in the compressive region of periodontal ligament after orthodontic force was applied on rats. Mechanistically, mechanical compressive force upregulated Adrb2 expression in primary-cultured human periodontal ligament cells (PDLCs) through the elevation of intracellular Ca2+ concentration. Activation of Adrb2 in PDLCs increased the RANKL/OPG ratio and promoted the peripheral blood mononuclear cell differentiation to osteoclasts in the cocultured system. Upregulation of Adrb2 in PDLCs promoted osteoclastogenesis, which accelerated OTM through Adrb2-enhanced bone resorption. In summary, this study suggests that mechanical force-induced Adrb2 activation in PDLCs contributes to SNS-regulated OTM.


Journal of Dental Research | 2013

Estrogen Aggravates Iodoacetate-induced Temporomandibular Joint Osteoarthritis

Xian Wang; Xiao-Xing Kou; Zhen Meng; Rui-Yun Bi; Yan Liu; J.N. Zhang; Y. Zhou; Y.H. Gan

Temporomandibular joint osteoarthritis (TMJOA) is clinically characterized by female preponderance, with a female-to-male ratio of more than 2:1; however, the underlying mechanism remains obscure. We examined the effects of estrogen on TMJOA induced by monosodium iodoacetate. Female rats were randomly and equally divided into 5 groups: control, sham-ovariectomized, and ovariectomized rats treated, respectively, with 17β-estradiol (E2) at doses of 0 µg, 20 µg, and 80 µg/day until the end of the experiment. After induction of TMJOA, TMJs were evaluated by histopathology and microCT, and the expression of Fas, FasL, caspase 3, and caspase 8 was evaluated by real-time polymerase chain-reaction or immunohistochemistry. Another 5 groups of female rats were used to evaluate the effect of estrogen receptor antagonist ICI 182780 on E2 effects on TMJOA, when injected intraperitoneally into the control, sham-ovariectomized, and 80-µg-E2-treated groups. We found that E2 potentiated cartilage degradation and subchondral bone erosion in iodoacetate-induced TMJOA. E2 also potentiated mRNA expression of Fas, FasL, caspase 3, and caspase 8 in the condylar cartilage. Moreover, the estrogen receptor antagonist partially blocked E2 effects on TMJOA. These findings suggest that E2 could aggravate TMJOA, which may be an important mechanism underlying the sexual dimorphism of TMJOA.


Journal of Dental Research | 2013

Decreased Osteogenesis in Stromal Cells from Radiolucent Zone of Human TMJ Ankylosis

E. Xiao; J.-M. Li; Y.-B. Yan; Jingang An; Deng-Hui Duan; Y.H. Gan; Y. Zhang

We previously hypothesized that the development of traumatic temporomandibular joint (TMJ) ankylosis was similar to that of hypertrophic non-union. Besides similarities in etiology, hypertrophic bone stumps, and long-term development, the radiolucent zone, frequently located in the ankylosed bone, is another common feature. In this study, we demonstrated that the radiolucent zone also contained multilineage potential cells (RZs, radiolucent-zone-related cells) as the non-union tissues. RZs were characterized and compared with mandibular bone marrow stem cells (BMSCs) by analysis of MSC-related markers, colony-forming-unit assays, multipotential differentiation assays, alkaline phosphatase (ALP) activity assays, and cell transplantation in vivo. Both cell types were positive for CD105, CD166, and Stro-1 expression, negative for CD34 and CD45 expression, and exhibited osteogenic, adipogenic, and chondrogenic differentiation potentials. However, compared with mandibular BMSCs, RZs showed lower colony-forming-unit abilities and proliferation rates. The mineralization and bone-forming ability of RZs was weaker than that of mandibular BMSCs, with Runx2 and ALP mRNA expression and ALP activity significantly lower in RZs. All these results suggest that RZs possess the properties of MSCs but lower proliferation and osteogenic differentiation capacity similar to that of stromal cells in hypertrophic non-union tissues.


Journal of Dental Research | 2015

M1-like Macrophage Polarization Promotes Orthodontic Tooth Movement:

D. He; Xiao-Xing Kou; R. Yang; D. Liu; Xinan Wang; Q. Luo; Y. Song; F. Liu; Y. Yan; Y.H. Gan; Y. Zhou

Macrophages play a crucial role in inflammatory-mediated bone loss. Orthodontic tooth movement (OTM) is associated with inflammatory bone remodeling. However, whether and how macrophages contribute to mechanical force–induced OTM remains unknown. In this study, we hypothesized that polarization of M1-like macrophages may contribute to the OTM. Orthodontic nickel-titanium springs were applied to the upper first molars of rats or mice to induce OTM. The distance of OTM gradually increased after mechanical force was applied to the rats for 5 and 10 d. M1-like macrophage polarization and expression of M1 cytokine tumor necrosis factor (TNF)-α also increased after force application. More importantly, monocyte/macrophage depletion in mice by injection of clodronate liposomes decreased the distance of OTM and the number of tartrate-resistant acid phosphatase (TRAP)–positive osteoclasts and CD68+ macrophages, accompanied by reduced expressions of M1 markers TNF-α and inducible nitric oxide synthase (iNOS), whereas systemic transfusion of M1 macrophages in mice increased them. Further experiments showed that injection of recombinant TNF-α increased the distance of OTM and the number of TRAP-positive osteoclasts and CD68+ macrophages, as well as upregulated the expression of TNF-α and iNOS. Blockage of TNF-α by etanercept injection reduced the distance of OTM and the number of TRAP-positive osteoclasts and CD68+ macrophages, as well as decreased the levels of TNF-α and iNOS. These data suggest that M1-like macrophage polarization promotes alveolar bone resorption and consequent OTM after mechanical force application.


Journal of Dental Research | 2015

T Cells Are Required for Orthodontic Tooth Movement

Y. Yan; F. Liu; Xiao-Xing Kou; D. Liu; R. Yang; Xinan Wang; Y. Song; D. He; Y.H. Gan; Y. Zhou

The immune system plays a pivotal role during bone remodeling process. Orthodontic tooth movement (OTM) induces local inflammation in periodontium, but whether systemic immune response is involved in OTM remains unknown. In this study, we show that tooth movement distance was significantly reduced in T-cell–deficient immunocompromised mice compared with wild-type (WT) mice. Intravenous infusion of allogeneic T cells to the immunocompromised mice rescued the OTM distance. Correspondingly, increased numbers of tartrate-resistant acid phosphatase (TRAP)–positive osteoclasts were detected around the alveolar bone after OTM in WT mice but were barely detected in immunocompromised mice. Moreover, intravenous infusion of T cells rescued the number of TRAP-positive osteoclasts in the OTM area of the immunocompromised mice, thus suggesting T cells are required for OTM. We then reveal that OTM induced a significant elevation of type 1 T helper cell (Th1) cytokines tumor necrosis factor–α (TNF-α) and interferon-γ (IFN-γ) around periodontal tissue in WT but not in immunocompromised mice. Infusion of T cells could increase the levels of TNF-α and IFN-γ in periodontal tissues of immunocompromised mice. More interestingly, intraperitoneal injection of TNF-α inhibitor etanercept significantly reduced the distance of OTM in T-cell–infused immunocompromised mice. In summary, this study demonstrates a previously unrecognized mechanism that T cells are required for OTM depending on Th1-associated cytokines.


Journal of Dental Research | 2014

Deterioration of Mechanical Properties of Discs in Chronically Inflamed TMJ

Xian Wang; S.J. Cui; Yan Liu; Q. Luo; R.J. Du; Xiao-Xing Kou; Jun Zhang; Y. Zhou; Y.H. Gan

Temporomandibular joint (TMJ) discs frequently undergo degenerative changes in arthritis. However, the biomechanical properties of pathogenic discs remain to be explored. In this study, we evaluated the effects of chronic inflammation on the biomechanical properties of TMJ discs in rats. Chronic inflammation of TMJs was induced by double intra-articular injections of complete Freund’s adjuvant for 5 weeks, and biomechanical properties and ultrastructure of the discs were examined by mechanical testing, scanning electron microscopy, and transmission electron microscopy. The instantaneous compressive moduli of the anterior and posterior bands of discs in inflamed TMJs were decreased significantly compared with those in the control group. The instantaneous tensile moduli of the discs of inflamed TMJs also showed significant decreases in both the anterior-posterior and mesial-lateral directions. The relaxation moduli of the discs of inflamed TMJs showed nearly the same tendency as the instantaneous moduli. The surfaces of the discs of inflamed TMJs became rough and porous due to the loss of the superficial gel-like stratum, with many collagen fibers exposed and degradation of the sub-superficial collagen fibrils. Our results suggested that chronic inflammation of TMJ could lead to deterioration of mechanical properties and alteration of disc ultrastructure, which might contribute to TMJ disc displacement.


European Journal of Pain | 2013

Involvement of trigeminal ganglionic Nav1.7 in hyperalgesia of inflamed temporomandibular joint is dependent on ERK1/2 phosphorylation of glial cells in rats

Rui-Yun Bi; Xiao-Xing Kou; Zhen Meng; Xian Wang; Yun Ding; Y.H. Gan

Inflammation is a major cause of temporomandibular disorder‐related pain. The Nav1.7 sodium channel has a critical function in pain perceptions. However, whether and how Nav1.7 in the trigeminal ganglion is involved in temporomandibular joint (TMJ) inflammatory pain remains to be examined.

Collaboration


Dive into the Y.H. Gan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge