Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. R. Harding is active.

Publication


Featured researches published by D. R. Harding.


Physics of Plasmas | 2011

The experimental plan for cryogenic layered target implosions on the National Ignition Facility—The inertial confinement approach to fusion

M. J. Edwards; J. D. Lindl; B. K. Spears; S. V. Weber; L. J. Atherton; D. L. Bleuel; David K. Bradley; D. A. Callahan; Charles Cerjan; D. S. Clark; G. W. Collins; J. Fair; R. J. Fortner; S. H. Glenzer; S. W. Haan; B. A. Hammel; Alex V. Hamza; S. P. Hatchett; N. Izumi; B. Jacoby; O. S. Jones; J. A. Koch; B. J. Kozioziemski; O. L. Landen; R. A. Lerche; B. J. MacGowan; A. J. Mackinnon; E. R. Mapoles; M. M. Marinak; M. J. Moran

Ignition requires precisely controlled, high convergence implosions to assemble a dense shell of deuterium-tritium (DT) fuel with ρR>∼1 g/cm2 surrounding a 10 keV hot spot with ρR ∼ 0.3 g/cm2. A working definition of ignition has been a yield of ∼1 MJ. At this yield the α-particle energy deposited in the fuel would have been ∼200 kJ, which is already ∼10 × more than the kinetic energy of a typical implosion. The National Ignition Campaign includes low yield implosions with dudded fuel layers to study and optimize the hydrodynamic assembly of the fuel in a diagnostics rich environment. The fuel is a mixture of tritium-hydrogen-deuterium (THD) with a density equivalent to DT. The fraction of D can be adjusted to control the neutron yield. Yields of ∼1014−15 14 MeV (primary) neutrons are adequate to diagnose the hot spot as well as the dense fuel properties via down scattering of the primary neutrons. X-ray imaging diagnostics can function in this low yield environment providing additional information about ...


Physics of Plasmas | 2004

Polar direct drive on the National Ignition Facility

S. Skupsky; J.A. Marozas; R. S. Craxton; R. Betti; T.J.B. Collins; J. A. Delettrez; V.N. Goncharov; P. W. McKenty; P. B. Radha; T. R. Boehly; J. P. Knauer; F. J. Marshall; D. R. Harding; J. D. Kilkenny; D. D. Meyerhofer; T. C. Sangster; R. L. McCrory

Three recent developments in direct-drive target design have enhanced the possibility of achieving high target gain on the National Ignition Facility (NIF): (1) Laser absorption was increased by almost 50% using wetted-foam targets. (2) Adiabat shaping significantly increased the hydrodynamic stability of the target during the acceleration phase of the implosion without sacrificing target gain. (3) Techniques to reduce laser imprint using pulse shaping and radiation preheat were developed. These design features can be employed for direct-drive-ignition experiments while the NIF is in the x-ray-drive configuration. This involves repointing some of the beams toward the equator of the target to improve uniformity of target drive. This approach, known as polar direct drive (PDD), will enhance the capability of the NIF to explore ignition conditions. PDD will couple more energy to the fuel than x-ray drive. The compressed fuel core can be more easily accessed for high-ρR diagnostic development and for fast-ign...


Physics of Plasmas | 2015

Direct-drive inertial confinement fusion: A review

R. S. Craxton; Karen S. Anderson; T. R. Boehly; V.N. Goncharov; D. R. Harding; J. P. Knauer; R. L. McCrory; P.W. McKenty; D. D. Meyerhofer; J. F. Myatt; Andrew J. Schmitt; J. D. Sethian; R. W. Short; S. Skupsky; W. Theobald; W. L. Kruer; Kokichi Tanaka; R. Betti; T.J.B. Collins; J. A. Delettrez; S. X. Hu; J.A. Marozas; A. V. Maximov; D.T. Michel; P. B. Radha; S. P. Regan; T. C. Sangster; W. Seka; A. A. Solodov; J. M. Soures

The direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. The problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 μm—the third harmonic of the Nd:glass laser—and 0.248 μm (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be nonlocal in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive–ignition experiments to be performed on the National Ignition Facility [Haynam et al., Appl. Opt. 46(16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 μm and 1/4 μm. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source.


Physics of Plasmas | 2014

Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGAa)

V.N. Goncharov; T. C. Sangster; R. Betti; T. R. Boehly; M.J. Bonino; T.J.B. Collins; R. S. Craxton; J. A. Delettrez; D. H. Edgell; R. Epstein; R.K. Follett; C.J. Forrest; D. H. Froula; V. Yu. Glebov; D. R. Harding; R.J. Henchen; S. X. Hu; I.V. Igumenshchev; R. Janezic; J. H. Kelly; Thomas Kessler; T. Z. Kosc; S. J. Loucks; J.A. Marozas; F. J. Marshall; A. V. Maximov; R.L. McCrory; P.W. McKenty; D. D. Meyerhofer; D.T. Michel

Reaching ignition in direct-drive (DD) inertial confinement fusion implosions requires achieving central pressures in excess of 100 Gbar. The OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] is used to study the physics of implosions that are hydrodynamically equivalent to the ignition designs on the National Ignition Facility (NIF) [J. A. Paisner et al., Laser Focus World 30, 75 (1994)]. It is shown that the highest hot-spot pressures (up to 40 Gbar) are achieved in target designs with a fuel adiabat of α ≃ 4, an implosion velocity of 3.8 × 107 cm/s, and a laser intensity of ∼1015 W/cm2. These moderate-adiabat implosions are well understood using two-dimensional hydrocode simulations. The performance of lower-adiabat implosions is significantly degraded relative to code predictions, a common feature between DD implosions on OMEGA and indirect-drive cryogenic implosions on the NIF. Simplified theoretical models are developed to gain physical understanding of the implosion dynamics th...


Physics of Plasmas | 2002

First results from cryogenic target implosions on OMEGA

C. Stoeckl; Catalin Chiritescu; J. A. Delettrez; R. Epstein; V. Yu. Glebov; D. R. Harding; R. L. Keck; S. J. Loucks; L. D. Lund; R. L. McCrory; P.W. McKenty; F. J. Marshall; D. D. Meyerhofer; S.F.B. Morse; S. P. Regan; P. B. Radha; S. Roberts; Thomas C. Sangster; W. Seka; S. Skupsky; V. A. Smalyuk; C. Sorce; J. M. Soures; R. P. J. Town; J. A. Frenje; C. K. Li; R. D. Petrasso; F. H. Séguin; Kurtis A. Fletcher; S. Paladino

Initial results from direct-drive spherical cryogenic target implosions on the 60-beam OMEGA laser system [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)] are presented. These experiments are part of the scientific base leading to direct-drive ignition implosions planned for the National Ignition Facility (NIF) [W. J. Hogan, E. I. Moses, B. E. Warner et al., Nucl. Fusion 41, 567 (2001)]. Polymer shells (1-mm diam with walls <3 μm) are filled with up to 1000 atm of D2 to provide 100-μm-thick ice layers. The ice layers are smoothed by IR heating with 3.16-μm laser light and are characterized using shadowgraphy. The targets are imploded by a 1-ns square pulse with up to ∼24 kJ of 351-nm laser light at a beam-to-beam rms energy balance of <3% and full-beam smoothing. Results shown include neutron yield, secondary neutron and proton yields, the time of peak neutron emission, and both time-integrated and time-resolved x-ray images of the imploding core. The experimental values are...


Physics of Plasmas | 2000

D–3He proton spectra for diagnosing shell ρR and fuel Ti of imploded capsules at OMEGA

C. K. Li; Damien G. Hicks; F. H. Séguin; J. A. Frenje; R. D. Petrasso; J. M. Soures; P. B. Radha; V. Yu. Glebov; C. Stoeckl; D. R. Harding; J. P. Knauer; Robert L. Kremens; F. J. Marshall; D. D. Meyerhofer; S. Skupsky; S. Roberts; C. Sorce; Thomas C. Sangster; Thomas W. Phillips; M. D. Cable; R. J. Leeper

Recent work has resulted in the first high-resolution, spectroscopic measurements of energetic charged particles on OMEGA laser facility [T. R. Boehly et al., Opt. Commun. 133, 496 (1997)]. Energy spectra of charged fusion products have been obtained from two spectrometers, and have been used to deduce various physical quantities in imploded capsules. In this paper the first use of 14.7 MeV deuterium–helium3 (D–3He) proton spectra for diagnosing shell areal density (ρR) and fuel ion temperature (Ti) is discussed. For thick-plastic shell capsules, shell areal densities between 20 and 70 mg/cm2 and ion temperatures between 3 and 5 keV have been determined. The spectral linewidths associated with such capsules are found to be wider than the doppler widths. This effect, the focus of future study, is the result of ρR evolution during the burn; or is the result of an extended burn region; or results from nonuniformities in the shell. For thin-glass shell capsules, the spectral linewidths are dominated by the do...


Physics of Plasmas | 2013

Improving cryogenic deuterium–tritium implosion performance on OMEGA

T. C. Sangster; V.N. Goncharov; R. Betti; P. B. Radha; T. R. Boehly; D. T. Casey; T.J.B. Collins; R. S. Craxton; J. A. Delettrez; D. H. Edgell; R. Epstein; C.J. Forrest; J. A. Frenje; D. H. Froula; M. Gatu-Johnson; Y. Yu. Glebov; D. R. Harding; M. Hohenberger; S. X. Hu; I.V. Igumenshchev; R. Janezic; J. H. Kelly; Thomas Kessler; C. Kingsley; T. Z. Kosc; J. P. Knauer; S. J. Loucks; J.A. Marozas; F. J. Marshall; A. V. Maximov

A flexible direct-drive target platform is used to implode cryogenic deuterium–tritium (DT) capsules on the OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)]. The goal of these experiments is to demonstrate ignition hydrodynamically equivalent performance where the laser drive intensity, the implosion velocity, the fuel adiabat, and the in-flight aspect ratio (IFAR) are the same as those for a 1.5-MJ target [Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010)] designed to ignite on the National Ignition Facility [Hogan et al., Nucl. Fusion 41, 567 (2001)]. The results from a series of 29 cryogenic DT implosions are presented. The implosions were designed to span a broad region of design space to study target performance as a function of shell stability (adiabat) and implosion velocity. Ablation-front perturbation growth appears to limit target performance at high implosion velocities. Target outer-surface defects associated with contaminant gases in the DT fuel are identified as the dominant per...


Physics of Plasmas | 2007

Cryogenic DT and D2 targets for inertial confinement fusiona)

T. C. Sangster; R. Betti; R. S. Craxton; J. A. Delettrez; D. H. Edgell; L. M. Elasky; V. Yu. Glebov; V.N. Goncharov; D. R. Harding; D. Jacobs-Perkins; R. Janezic; R. L. Keck; J. P. Knauer; S. J. Loucks; L. D. Lund; F. J. Marshall; R.L. McCrory; P.W. McKenty; D. D. Meyerhofer; P. B. Radha; S. P. Regan; W. Seka; W.T. Shmayda; S. Skupsky; V. A. Smalyuk; J. M. Soures; C. Stoeckl; B. Yaakobi; J. A. Frenje; C. K. Li

Ignition target designs for inertial confinement fusion on the National Ignition Facility (NIF) [W. J. Hogan et al., Nucl. Fusion 41, 567 (2001)] are based on a spherical ablator containing a solid, cryogenic-fuel layer of deuterium and tritium. The need for solid-fuel layers was recognized more than 30 years ago and considerable effort has resulted in the production of cryogenic targets that meet most of the critical fabrication tolerances for ignition on the NIF. At the University of Rochester’s Laboratory for Laser Energetics (LLE), the inner-ice surface of cryogenic DT capsules formed using β-layering meets the surface-smoothness requirement for ignition (<1-μm rms in all modes). Prototype x-ray-drive cryogenic targets being produced at the Lawrence Livermore National Laboratory are nearing the tolerances required for ignition on the NIF. At LLE, these cryogenic DT (and D2) capsules are being imploded on the direct-drive 60-beam, 30-kJ UV OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]...


Physics of Plasmas | 2010

Shock-tuned cryogenic-deuterium-tritium implosion performance on Omega

T. C. Sangster; V.N. Goncharov; R. Betti; T. R. Boehly; D. T. Casey; T.J.B. Collins; R. S. Craxton; J. A. Delettrez; D. H. Edgell; R. Epstein; Kurtis A. Fletcher; J. A. Frenje; Y. Yu. Glebov; D. R. Harding; S. X. Hu; I. V. Igumenschev; J. P. Knauer; S. J. Loucks; C. K. Li; J.A. Marozas; F. J. Marshall; R. L. McCrory; P.W. McKenty; D. D. Meyerhofer; P.M. Nilson; S. P. Padalino; R. D. Petrasso; P. B. Radha; S. P. Regan; F. H. Séguin

Cryogenic-deuterium-tritium (DT) target compression experiments with low-adiabat (α), multiple-shock drive pulses have been performed on the Omega Laser Facility [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)] to demonstrate hydrodynamic-equivalent ignition performance. The multiple-shock drive pulse facilitates experimental shock tuning using an established cone-in-shell target platform [T. R. Boehly, R. Betti, T. R. Boehly et al., Phys. Plasmas 16, 056301 (2009)]. These shock-tuned drive pulses have been used to implode cryogenic-DT targets with peak implosion velocities of 3×107 cm/s at peak drive intensities of 8×1014 W/cm2. During a recent series of α∼2 implosions, one of the two necessary conditions for initiating a thermonuclear burn wave in a DT plasma was achieved: an areal density of approximately 300 mg/cm2 was inferred using the magnetic recoil spectrometer [J. A. Frenje, C. K. Li, F. H. Seguin et al., Phys. Plasmas 16, 042704 (2009)]. The other condition—a burn-averaged ion temperature ⟨Ti⟩n of 8–10 keV—cannot be achieved on Omega because of the limited laser energy; the kinetic energy of the imploding shell is insufficient to heat the plasma to these temperatures. A ⟨Ti⟩n of approximately 3.4 keV would be required to demonstrate ignition hydrodynamic equivalence [Betti et al., Phys. Plasmas17, 058102 (2010)]. The ⟨Ti⟩n reached during the recent series of α∼2 implosions was approximately 2 keV, limited primarily by laser-drive and target nonuniformities. Work is underway to improve drive and target symmetry for future experiments.Cryogenic-deuterium-tritium (DT) target compression experiments with low-adiabat (α), multiple-shock drive pulses have been performed on the Omega Laser Facility [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)] to demonstrate hydrodynamic-equivalent ignition performance. The multiple-shock drive pulse facilitates experimental shock tuning using an established cone-in-shell target platform [T. R. Boehly, R. Betti, T. R. Boehly et al., Phys. Plasmas 16, 056301 (2009)]. These shock-tuned drive pulses have been used to implode cryogenic-DT targets with peak implosion velocities of 3×107 cm/s at peak drive intensities of 8×1014 W/cm2. During a recent series of α∼2 implosions, one of the two necessary conditions for initiating a thermonuclear burn wave in a DT plasma was achieved: an areal density of approximately 300 mg/cm2 was inferred using the magnetic recoil spectrometer [J. A. Frenje, C. K. Li, F. H. Seguin et al., Phys. Plasmas 16, 042704 (2009)]. The other condition—a burn...


Physics of Plasmas | 2015

Polar-direct-drive experiments on the National Ignition Facilitya)

M. Hohenberger; P. B. Radha; J. F. Myatt; S. LePape; J.A. Marozas; F. J. Marshall; D.T. Michel; S. P. Regan; W. Seka; A. Shvydky; T. C. Sangster; J.W. Bates; R. Betti; T. R. Boehly; M.J. Bonino; D. T. Casey; T.J.B. Collins; R. S. Craxton; J. A. Delettrez; D. H. Edgell; R. Epstein; G. Fiksel; P. Fitzsimmons; J. A. Frenje; D. H. Froula; V.N. Goncharov; D. R. Harding; D. H. Kalantar; Max Karasik; Terrance J. Kessler

To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beam geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D2 gas were imploded with total drive energies ranging from ∼500 to 750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 × 1014 to 1.2 × 1015 W/cm2. Results from these initial experi...

Collaboration


Dive into the D. R. Harding's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. B. Radha

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

R. Betti

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. Seka

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

D. H. Edgell

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

J. P. Knauer

University of Rochester

View shared research outputs
Researchain Logo
Decentralizing Knowledge