Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. W. Toohey is active.

Publication


Featured researches published by D. W. Toohey.


Science | 1991

Free Radicals Within the Antarctic Vortex: The Role of CFCs in Antarctic Ozone Loss

J. G. Anderson; D. W. Toohey; William H. Brune

How strong is the case linking global release of chlorofluorocarbons to episodic disappearance of ozone from the Antarctic stratosphere each austral spring? Three lines of evidence defining a link are (i) observed containment in the vortex of ClO concentrations two orders of magnitude greater than normal levels; (ii) in situ observations obtained during ten high-altitude aircraft flights into the vortex as the ozone hole was forming that show a decrease in ozone concentrations as ClO concentrations increased; and (iii) a comparison between observed ozone loss rates and those predicted with the use of absolute concentrations of ClO and BrO, the rate-limiting radicals in an array of proposed catalytic cycles. Recent advances in our understanding of the kinetics, photochemistry, and structural details of key intermediates in these catalytic cycles as well as an improved absolute calibration for ClO and BrO concentrations at the temperatures and pressures encountered in the lower antarctic stratosphere have been essential for defining the link.


Science | 1994

Removal of Stratospheric O3 by Radicals: In Situ Measurements of OH, HO2, NO, NO2, ClO, and BrO

Paul O. Wennberg; R. C. Cohen; R. M. Stimpfle; J. P. Koplow; J. G. Anderson; R. J. Salawitch; D. W. Fahey; E. L. Woodbridge; E. R. Keim; R. S. Gao; C. R. Webster; R. D. May; D. W. Toohey; Linnea M. Avallone; M. H. Proffitt; M. Loewenstein; J. R. Podolske; K. R. Chan; S. C. Wofsy

Simultaneous in situ measurements of the concentrations of OH, HO2, ClO, BrO, NO, and NO2 demonstrate the predominance of odd-hydrogen and halogen free-radical catalysis in determining the rate of removal of ozone in the lower stratosphere during May 1993. A single catalytic cycle, in which the rate-limiting step is the reaction of HO2 with ozone, accounted for nearly one-half of the total O3 removal in this region of the atmosphere. Halogen-radical chemistry was responsible for approximately one-third of the photochemical removal of O3; reactions involving BrO account for one-half of this loss. Catalytic destruction by NO2, which for two decades was considered to be the predominant loss process, accounted for less than 20 percent of the O3 removal. The measurements demonstrate quantitatively the coupling that exists between the radical families. The concentrations of HO2 and ClO are inversely correlated with those of NO and NO2. The direct determination of the relative importance of the catalytic loss processes, combined with a demonstration of the reactions linking the hydrogen, halogen, and nitrogen radical concentrations, shows that in the air sampled the rate of O3 removal was inversely correlated with total NOx, loading.


Journal of Geophysical Research | 1994

Transport out of the lower stratospheric Arctic vortex by Rossby wave breaking

Darryn W. Waugh; R. A. Plumb; Roger Atkinson; Mark R. Schoeberl; Leslie R. Lait; Paul A. Newman; M. Loewenstein; D. W. Toohey; Linnea M. Avallone; C. R. Webster; R. D. May

The fine-scale structure in lower stratospheric tracer transport during the period of the two Arctic Airborne Stratospheric Expeditions (January and February 1989; December 1991 to March 1992) is investigated using contour advection with surgery calculations. These calculations show that Rossby wave breaking is an ongoing occurrence during these periods and that air is ejected from the polar vortex in the form of long filamentary structures. There is good qualitative agreement between these filaments and measurements of chemical tracers taken aboard the NASA ER-2 aircraft. The ejected air generally remains filamentary and is stretched and mixed with midlatitude air as it is wrapped around the vortex. This process transfers vortex air into midlatitudes and also produces a narrow region of fine-scale filaments surrounding the polar vortex. Among other things, this makes it difficult to define a vortex edge. The calculations also show that strong stirring can occur inside as well as outside the vortex.


Science | 1993

Chlorine chemistry on polar stratospheric cloud particles in the Arctic winter

C. R. Webster; Randy D. May; D. W. Toohey; Linnea M. Avallone; J. G. Anderson; Paul A. Newman; Leslie R. Lait; Mark R. Schoeberl; James W. Elkins; K. R. Chan

Simultaneous in situ measurements of hydrochloric acid (HCl) and chlorine monoxide (ClO) in the Arctic winter vortex showed large HCl losses, of up to 1 part per billion by volume (ppbv), which were correlated with high ClO levels of up to 1.4 ppbv. Air parcel trajectory analysis identified that this conversion of inorganic chlorine occurred at air temperatures of less than 196 � 4 kelvin. High ClO was always accompanied by loss of HCI mixing ratios equal to �(ClO + 2Cl2O2). These data indicate that the heterogeneous reaction HCl + ClONO2 → Cl2 + HNO3 on particles of polar stratospheric clouds establishes the chlorine partitioning, which, contrary to earlier notions, begins with an excess of ClONO2, not HCl.


Atmospheric Chemistry and Physics | 2007

Introducing the concept of Potential Aerosol Mass (PAM)

E. Kang; M. J. Root; D. W. Toohey; William H. Brune

Potential Aerosol Mass (PAM) can be defined as the maximum aerosol mass that the oxidation of precursor gases produces. In the measurement, all precursor gases are rapidly oxidized with extreme amounts of oxidants to low volatility compounds, resulting in the aerosol formation. Oxidation occurs in a small, simple, flow-through chamber that has a short residence time and is irradiated with ultraviolet light. The amount of the oxidants ozone (O3), hydroxyl (OH), and hydroperoxyl (HO2) were measured directly and can be controlled by varying the UV light and the relative humidity. Maximum values were 40 ppmv for O3, 500 pptv for OH, and 4 ppbv for HO2. The oxidant amounts are 100 to 1000 times troposphere values, but the ratios OH/O3 and HO2/OH are similar to troposphere values. The aerosol production mechanism and the aerosol mass yield were studied for several controlling variables, such as temperature, relative humidity, oxidant concentration, presence of nitrogen oxides (NOx), precursor gas composition and amount, and the presence of acidic seed aerosol. The measured secondary organic aerosol (SOA) yield of several natural and anthropogenic volatile organic compounds and a mixture of hydrocarbons in the PAM chamber were similar to those obtained in large, batch-style environmental chambers. This PAM method is being developed for measuring potential aerosol mass in the atmosphere, but is also useful for examining SOA processes in the laboratory and in environmental chambers.


Journal of Geophysical Research | 2002

Chemical depletion of Arctic ozone in winter 1999/2000

M. Rex; R. J. Salawitch; N. R. P. Harris; P. von der Gathen; G. O. Braathen; Astrid Schulz; H. Deckelmann; M. P. Chipperfield; Björn-Martin Sinnhuber; E. Reimer; R. Alfier; Richard M. Bevilacqua; K. W. Hoppel; M. Fromm; J. Lumpe; H. Küllmann; Armin Kleinböhl; H. Bremer; M. von König; K. Künzi; D. W. Toohey; H. Vömel; Erik Charles Richard; K. C. Aikin; H. Jost; Jeffery B. Greenblatt; M. Loewenstein; J. R. Podolske; C. R. Webster; G. J. Flesch

During Arctic winters with a cold, stable stratospheric circulation, reactions on the surface of polar stratospheric clouds (PSCs) lead to elevated abundances of chlorine monoxide (ClO) that, in the presence of sunlight, destroy ozone. Here we show that PSCs were more widespread during the 1999/2000 Arctic winter than for any other Arctic winter in the past two decades. We have used three fundamentally different approaches to derive the degree of chemical ozone loss from ozonesonde, balloon, aircraft, and satellite instruments. We show that the ozone losses derived from these different instruments and approaches agree very well, resulting in a high level of confidence in the results. Chemical processes led to a 70% reduction of ozone for a region ∼1 km thick of the lower stratosphere, the largest degree of local loss ever reported for the Arctic. The Match analysis of ozonesonde data shows that the accumulated chemical loss of ozone inside the Arctic vortex totaled 117 ± 14 Dobson units (DU) by the end of winter. This loss, combined with dynamical redistribution of air parcels, resulted in a 88 ± 13 DU reduction in total column ozone compared to the amount that would have been present in the absence of any chemical loss. The chemical loss of ozone throughout the winter was nearly balanced by dynamical resupply of ozone to the vortex, resulting in a relatively constant value of total ozone of 340 ± 50 DU between early January and late March. This observation of nearly constant total ozone in the Arctic vortex is in contrast to the increase of total column ozone between January and March that is observed during most years.


Science | 1991

The potential for ozone depletion in the Arctic polar stratosphere

William H. Brune; J. G. Anderson; D. W. Toohey; D. W. Fahey; S. R. Kawa; Roger Jones; D. S. McKenna; Lamont R. Poole

The nature of the Arctic polar stratosphere is observed to be similar in many respects to that of the Antarctic polar stratosphere, where an ozone hole has been identified. Most of the available chlorine (HCl and ClONO2) was converted by reactions on polar stratospheric clouds to reactive ClO and Cl2O2 throughout the Arctic polar vortex before midwinter. Reactive nitrogen was converted to HNO3, and some, with spatial inhomogeneity, fell out of the stratosphere. These chemical changes ensured characteristic ozone losses of 10 to 15% at altitudes inside the polar vortex where polar stratospheric clouds had occurred. These local losses can translate into 5 to 8% losses in the vertical column abundance of ozone. As the amount of stratospheric chlorine inevitably increases by 50% over the next two decades, ozone losses recognizable as an ozone hole may well appear.


Science | 1993

In Situ Observations of Aerosol and Chlorine Monoxide After the 1991 Eruption of Mount Pinatubo: Effect of Reactions on Sulfate Aerosol

J. C. Wilson; Haflidi H. Jonsson; C. A. Brock; D. W. Toohey; Linnea M. Avallone; Darrel Baumgardner; James E. Dye; Lamont R. Poole; David C. Woods; Robert J. DeCoursey; Mary T. Osborn; M. C. Pitts; K. K. Kelly; K. R. Chan; G. V. Ferry; M. Loewenstein; J. R. Podolske; A. Weaver

Highly resolved aerosol size distributions measured from high-altitude aircraft can be used to describe the effect of the 1991 eruption of Mount Pinatubo on the stratospheric aerosol. In some air masses, aerosol mass mixing ratios increased by factors exceeding 100 and aerosol surface area concentrations increased by factors of 30 or more. Increases in aerosol surface area concentration were accompanied by increases in chlorine monoxide at mid-latitudes when confounding factors were controlled. This observation supports the assertion that reactions occurring on the aerosol can increase the fraction of stratospheric chlorine that occurs in ozone-destroying forms.


Science | 1993

The seasonal evolution of reactive chlorine in the Northern Hemisphere stratosphere

D. W. Toohey; Linnea M. Avallone; Leslie R. Lait; Paul A. Newman; Mark R. Schoeberl; D. W. Fahey; E. L. Woodbridge; J. G. Anderson

In situ measurements of chlorine monoxide (ClO) at mid- and high northern latitudes are reported for the period October 1991 to February 1992. As early as mid-December and throughout the winter, significant enhancements of this ozone-destroying radical were observed within the polar vortex shortly after temperatures dropped below 195 k. Decreases in ClO observed in February were consistent with the rapid formation of chlorine nitrate (ClONO2) by recombination of ClO with nitrogen dioxide (NO2) released photochemically from nitric acid (HNO3). Outside the vortex, ClO abundances were higher than in previous years as a result of NOx suppression by heterogeneous reactions on sulfate aerosols enhanced by the eruption of Mount Pinatubo.


Journal of the Atmospheric Sciences | 2007

Cloud activating properties of aerosol observed during CELTIC

Craig Stroud; Athanasios Nenes; Jose L. Jimenez; P. F. DeCarlo; J. Alex Huffman; Roelof T. Bruintjes; E. Nemitz; A. E. Delia; D. W. Toohey; Alex Guenther; Sreela Nandi

Measurements of aerosol size distribution, chemical composition, and cloud condensation nuclei (CCN) concentration were performed during the Chemical Emission, Loss, Transformation, and Interactions with Canopies (CELTIC) field program at Duke Forest in North Carolina. A kinetic model of the cloud activation of ambient aerosol in the chamber of the CCN instrument was used to perform an aerosol–CCN closure study. This study advances prior investigations by employing a novel fitting algorithm that was used to integrate scanning mobility particle sizer (SMPS) measurements of aerosol number size distribution and aerosol mass spectrometer (AMS) measurements of the mass size distribution for sulfate, nitrate, ammonium, and organics into a single, coherent description of the ambient aerosol in the size range critical to aerosol activation (around 100-nm diameter). Three lognormal aerosol size modes, each with a unique internally mixed composition, were used as input into the kinetic model. For the two smaller size modes, which control CCN number concentration, organic aerosol mass fractions for the defined cases were between 58% and 77%. This study is also unique in that the water vapor accommodation coefficient was estimated based on comparing the initial timing for CCN activation in the instrument chamber with the activation predicted by the kinetic model. The kinetic model overestimated measured CCN concentrations, especially under polluted conditions. Prior studies have attributed a positive model bias to an incomplete understanding of the aerosol composition, especially the role of organics in the activation process. This study shows that including measured organic mass fractions with an assumed organic aerosol speciation profile (pinic acid, fulvic acid, and levoglucosan) and an assumed organic aerosol solubility of 0.02 kg kg 1 still resulted in a significant model positive bias for polluted case study periods. The slope and y intercept for the CCN predicted versus CCN observed regression was found to be 1.9 and 180 cm 3 , respectively. The overprediction generally does not exceed uncertainty limits but is indicative that a bias exists in the measurements or application of model. From this study, uncertainties in the particle number and mass size distributions as the cause for the model bias can be ruled out. The authors are also confident that the model is including the effects of growth kinetics on predicted activated number. However, one cannot rule out uncertainties associated with poorly characterized CCN measurement biases, uncertainties in assumed organic solubility, and uncertainties in aerosol mixing state. Sensitivity simulations suggest that assuming either an insoluble organic fraction or external aerosol mixing were both sufficient to reconcile the model bias.

Collaboration


Dive into the D. W. Toohey's collaboration.

Top Co-Authors

Avatar

Linnea M. Avallone

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William H. Brune

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

M. N. Ross

The Aerospace Corporation

View shared research outputs
Top Co-Authors

Avatar

D. W. Fahey

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Brett F. Thornton

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. L. Thompson

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

A. E. Delia

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

C. R. Webster

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge