Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcel Brass is active.

Publication


Featured researches published by Marcel Brass.


Acta Psychologica | 2001

Movement observation affects movement execution in a simple response task

Marcel Brass; Harold Bekkering; Wolfgang Prinz

The present study was designed to examine the hypothesis that stimulus-response arrangements with high ideomotor compatibility lead to substantial compatibility effects even in simple response tasks. In Experiment 1, participants executed pre-instructed finger movements in response to compatible and incompatible finger movements. A pronounced reaction time advantage was found for compatible as compared to incompatible trials. Experiment 2 revealed a much smaller compatibility effect for less ideomotor-compatible object movements compared to finger movements. Experiment 3 presented normal stimuli (hand upright) and flipped stimuli (hand upside-down). Two components were found to contribute to the compatibility effect, a dynamic spatial compatibility component (related to movement directions) and an ideomotor component (related to movement types). The implications of these results for theories about stimulus-response compatibility (SRC) as well as for theories about imitation are discussed.


Brain and Cognition | 2000

Compatibility between observed and executed finger movements: Comparing symbolic, spatial, and imitative cues

Marcel Brass; Harold Bekkering; Andreas Wohlschläger; Wolfgang Prinz

Intuitively, one can assume that imitating a movement is an easier task than responding to a symbolic stimulus like a verbal instruction. Support for this suggestion can be found in neuropsychological research as well as in research on stimulus-response compatibility. However controlled experimental evidence for this assumption is still lacking. We used a stimulus-response compatibility paradigm to test the assumption. In a series of experiments, it was tested whether observed finger movements have a stronger influence on finger movement execution than a symbolic or spatial cue. In the first experiment, we compared symbolic cues with observed finger movements using an interference paradigm. Observing finger movements strongly influenced movement execution, irrespective of whether the finger movement was the relevant or the irrelevant stimulus dimension. In the second experiment, effects of observed finger movements and spatial finger cues were compared. The observed finger movement dominated the spatial finger cue. A reduction in the similarity of observed and executed action in the third experiment led to a decrease of the influence of observed finger movement, which demonstrates the crucial role of the imitative relation of observed and executed action for the described effects. The results are discussed in relation to recent models of stimulus-response compatibility. Neurocognitive support for the strong relationship between movement observation and movement execution is reported.


Human Brain Mapping | 2005

Involvement of the Inferior Frontal Junction in Cognitive Control: Meta-Analyses of Switching and Stroop Studies

Jan Derrfuss; Marcel Brass; Jane Neumann; D. Yves von Cramon

There is growing evidence that a specific region in the posterior frontolateral cortex is involved intimately in cognitive control processes. This region, located in the vicinity of the junction of the inferior frontal sulcus and the inferior precentral sulcus, was termed the inferior frontal junction (IFJ). The IFJ was shown to be involved in the updating of task representations and to be activated commonly in a within‐subject investigation of a task‐switching paradigm, the Stroop task, and a verbal n‐back task. Here, we investigate the involvement of the IFJ in cognitive control by employing a meta‐analytic approach. Two quantitative meta‐analyses of functional magnetic resonance imaging (fMRI) studies were conducted. One meta‐analysis included frontal activations from task‐switching, set‐shifting, and stimulus–response (S–R) reversal studies, the other included frontal activations from color–word Stroop studies. Results showed highly significant clustering of activations in the IFJ in both analyses. These results provide strong evidence for the consistent involvement of the IFJ in both switching and Stroop paradigms. Furthermore, they support our concept of areal specialization in the frontolateral cortex, which posits that it is not only the middorsolateral part that plays an important role in cognitive control, but also the IFJ. Finally, our results demonstrate how quantitative meta‐analyses can be used to test hypotheses about the involvement of specific brain regions in cognitive control. Hum Brain Mapp 25:22–34, 2005.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Reafferent copies of imitated actions in the right superior temporal cortex

Marco Iacoboni; Lisa Koski; Marcel Brass; Harold Bekkering; Roger P. Woods; Marie-Charlotte Dubeau; John C. Mazziotta; Giacomo Rizzolatti

Imitation is a complex phenomenon, the neural mechanisms of which are still largely unknown. When individuals imitate an action that already is present in their motor repertoire, a mechanism matching the observed action onto an internal motor representation of that action should suffice for the purpose. When one has to copy a new action, however, or to adjust an action present in ones motor repertoire to a different observed action, an additional mechanism is needed that allows the observer to compare the action made by another individual with the sensory consequences of the same action made by himself. Previous experiments have shown that a mechanism that directly matches observed actions on their motor counterparts exists in the premotor cortex of monkeys and humans. Here we report the results of functional magnetic resonance experiments, suggesting that in the superior temporal sulcus, a higher order visual region, there is a sector that becomes active both during hand action observation and during imitation even in the absence of direct vision of the imitators hand. The motor-related activity is greater during imitation than during control motor tasks. This newly identified region has all the requisites for being the region at which the observed actions, and the reafferent motor-related copies of actions made by the imitator, interact.


Trends in Cognitive Sciences | 2005

Imitation: Is cognitive neuroscience solving the correspondence problem?

Marcel Brass; Cecilia Heyes

Imitation poses a unique problem: how does the imitator know what pattern of motor activation will make their action look like that of the model? Specialist theories suggest that this correspondence problem has a unique solution; there are functional and neurological mechanisms dedicated to controlling imitation. Generalist theories propose that the problem is solved by general mechanisms of associative learning and action control. Recent research in cognitive neuroscience, stimulated by the discovery of mirror neurons, supports generalist solutions. Imitation is based on the automatic activation of motor representations by movement observation. These externally triggered motor representations are then used to reproduce the observed behaviour. This imitative capacity depends on learned perceptual-motor links. Finally, mechanisms distinguishing self from other are implicated in the inhibition of imitative behaviour.


Trends in Cognitive Sciences | 2005

The role of the inferior frontal junction area in cognitive control.

Marcel Brass; Jan Derrfuss; Birte U. Forstmann; D. Yves von Cramon

Cognitive control processes refer to our ability to coordinate thoughts and actions in accordance with internal goals. In the fronto-lateral cortex such processes have been primarily related to mid-dorsolateral prefrontal cortex (mid-DLPFC). However, recent brain-imaging and meta-analytic studies suggest that a region located more posterior in the fronto-lateral cortex plays a pivotal role in cognitive control as well. This region has been termed the inferior frontal junction area and can be functionally and structurally distinguished from mid-DLPFC.


NeuroImage | 2004

Cognitive control in the posterior frontolateral cortex: Evidence from common activations in task coordination, interference control, and working memory

Jan Derrfuss; Marcel Brass; D. Yves von Cramon

Cognitive control has often been associated with activations of middorsolateral prefrontal cortex. However, recent evidence highlights the importance of a more posterior frontolateral region around the junction of the inferior frontal sulcus and the inferior precentral sulcus (the inferior frontal junction area, IFJ). In the present experiment, we investigated the involvement of the IFJ in a task-switching paradigm, a manual Stroop task, and a verbal n-back task in a within-session within-group design. After computing contrasts for the individual tasks, the resulting z maps were overlaid to identify areas commonly activated by these tasks. Common activations were found in the IFJ, in the pre-SMA extending into mesial BA 8, in the middle frontal gyrus bordering the inferior frontal sulcus, in the anterior insula, and in parietal and thalamic regions. These results indicate the existence of a network of prefrontal, parietal, and subcortical regions mediating cognitive control in task coordination, interference control, and working memory. In particular, the results provide evidence for the assumption that, in the frontolateral cortex, not only the middorsolateral region but also the IFJ plays an important role in cognitive control.


The Journal of Neuroscience | 2007

To do or not to do: The neural signature of self-control

Marcel Brass; Patrick Haggard

Voluntary action is fundamental to human existence. Recent research suggests that volition involves a specific network of brain activity, centered on the fronto-median cortex. An important but neglected aspect of intentional action involves the decision whether to act or not. This decision process is crucial in daily life because it allows us to form intentions without necessarily implementing them. In the present study, we investigate the neural correlates of intentionally inhibiting actions using functional magnetic resonance imaging. Our data show that a specific area of the fronto-median cortex is more strongly activated when people prepare manual actions but then intentionally cancel them, compared with when they prepare and then complete the same actions. Our results suggest that the human brain network for intentional action includes a control structure for self-initiated inhibition or withholding of intended actions. The mental control of action has an enduring scientific interest, linked to the philosophical concept of “free will.” Our results identify a candidate brain area that reflects the crucial decision to do or not to do.


Journal of Cognitive Neuroscience | 2004

Decomposing Components of Task Preparation with Functional Magnetic Resonance Imaging

Marcel Brass; D. Yves von Cramon

It is widely acknowledged that the prefrontal cortex plays a major role in cognitive control processes. One important experimental paradigm for investigating such higher order cognitive control is the task-switching paradigm. This paradigm investigates the ability to switch flexibly between different task situations. In this context, it has been found that participants are able to anticipatorily prepare an upcoming task. This ability has been assumed to reflect endogenous cognitive control. However, it is difficult to isolate task preparation process from task execution using functional magnetic resonance imaging (fMRI). In the present study, we introduce a new experimental manipulation to investigate task preparation with fMRI. By manipulating the number of times a task was prepared, we could demonstrate that the left inferior frontal junction (IFJ) area (near the junction of inferior frontal sulcus and inferior precentral sulcus), the right inferior frontal gyrus, and the right intraparietal sulcus are involved in task preparation. By manipulating the cue-task mapping, we could further show that this activation is not related to cue encoding but to the updating of the relevant task representation. Based on these and previous results, we assume that the IFJ area constitutes a functionally separable division of the lateral prefrontal cortex. Finally, our data suggest that task preparation does not differ for switch and repetition trials in paradigms with a high proportion of switch trials, casting doubt on the assumption that an independent task set reconfiguration process takes place in the preparation interval.


Neuropsychologia | 2005

The inhibition of imitative and overlearned responses: A functional double dissociation

Marcel Brass; Jan Derrfuss; D. Yves von Cramon

Neuropsychological research has established that the inhibition of dominant response tendencies is a function of the prefrontal cortex. These inhibitory mechanisms are tested using tasks like the Stroop task, in which the prepotency of the dominant response is based on a learned relationship of stimulus and response. However, it has also been reported that patients with prefrontal lesions may have problems inhibiting imitative responses. The question arises of whether the inhibition of overlearned and imitative responses entails the same or different functional mechanisms and cortical networks. In a recent neuropsychological study with prefrontal patients we found first evidence for such a dissociation. The present fMRI study further investigated this question by directly comparing brain activity in the inhibition of overlearned and imitative response tendencies. It emerges that response inhibition in the two tasks involves different neural networks. While the inhibition of overlearned responses requires a fronto-parietal network involved in interference control and task management, the inhibition of imitative responses involves cortical areas that are required to distinguish between self-generated and externally triggered motor representations. The only frontal brain area that showed an overlap was located in the right inferior frontal gyrus and is probably related to the generation of the stop signal.

Collaboration


Dive into the Marcel Brass's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge