Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dacheng Tao is active.

Publication


Featured researches published by Dacheng Tao.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2007

General Tensor Discriminant Analysis and Gabor Features for Gait Recognition

Dacheng Tao; Xuelong Li; Xindong Wu; Stephen J. Maybank

Traditional image representations are not suited to conventional classification methods such as the linear discriminant analysis (LDA) because of the undersample problem (USP): the dimensionality of the feature space is much higher than the number of training samples. Motivated by the successes of the two-dimensional LDA (2DLDA) for face recognition, we develop a general tensor discriminant analysis (GTDA) as a preprocessing step for LDA. The benefits of GTDA, compared with existing preprocessing methods such as the principal components analysis (PCA) and 2DLDA, include the following: 1) the USP is reduced in subsequent classification by, for example, LDA, 2) the discriminative information in the training tensors is preserved, and 3) GTDA provides stable recognition rates because the alternating projection optimization algorithm to obtain a solution of GTDA converges, whereas that of 2DLDA does not. We use human gait recognition to validate the proposed GTDA. The averaged gait images are utilized for gait representation. Given the popularity of Gabor-function-based image decompositions for image understanding and object recognition, we develop three different Gabor-function-based image representations: 1) GaborD is the sum of Gabor filter responses over directions, 2) GaborS is the sum of Gabor filter responses over scales, and 3) GaborSD is the sum of Gabor filter responses over scales and directions. The GaborD, GaborS, and GaborSD representations are applied to the problem of recognizing people from their averaged gait images. A large number of experiments were carried out to evaluate the effectiveness (recognition rate) of gait recognition based on first obtaining a Gabor, GaborD, GaborS, or GaborSD image representation, then using GDTA to extract features and, finally, using LDA for classification. The proposed methods achieved good performance for gait recognition based on image sequences from the University of South Florida (USF) HumanID Database. Experimental comparisons are made with nine state-of-the-art classification methods in gait recognition.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2006

Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval

Dacheng Tao; Xiaoou Tang; Xuelong Li; Xindong Wu

Relevance feedback schemes based on support vector machines (SVM) have been widely used in content-based image retrieval (CBIR). However, the performance of SVM-based relevance feedback is often poor when the number of labeled positive feedback samples is small. This is mainly due to three reasons: 1) an SVM classifier is unstable on a small-sized training set, 2) SVMs optimal hyperplane may be biased when the positive feedback samples are much less than the negative feedback samples, and 3) overfitting happens because the number of feature dimensions is much higher than the size of the training set. In this paper, we develop a mechanism to overcome these problems. To address the first two problems, we propose an asymmetric bagging-based SVM (AB-SVM). For the third problem, we combine the random subspace method and SVM for relevance feedback, which is named random subspace SVM (RS-SVM). Finally, by integrating AB-SVM and RS-SVM, an asymmetric bagging and random subspace SVM (ABRS-SVM) is built to solve these three problems and further improve the relevance feedback performance


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2009

Geometric Mean for Subspace Selection

Dacheng Tao; Xuelong Li; Xindong Wu; Stephen J. Maybank

Subspace selection approaches are powerful tools in pattern classification and data visualization. One of the most important subspace approaches is the linear dimensionality reduction step in the Fishers linear discriminant analysis (FLDA), which has been successfully employed in many fields such as biometrics, bioinformatics, and multimedia information management. However, the linear dimensionality reduction step in FLDA has a critical drawback: for a classification task with c classes, if the dimension of the projected subspace is strictly lower than c - 1, the projection to a subspace tends to merge those classes, which are close together in the original feature space. If separate classes are sampled from Gaussian distributions, all with identical covariance matrices, then the linear dimensionality reduction step in FLDA maximizes the mean value of the Kullback-Leibler (KL) divergences between different classes. Based on this viewpoint, the geometric mean for subspace selection is studied in this paper. Three criteria are analyzed: 1) maximization of the geometric mean of the KL divergences, 2) maximization of the geometric mean of the normalized KL divergences, and 3) the combination of 1 and 2. Preliminary experimental results based on synthetic data, UCI Machine Learning Repository, and handwriting digits show that the third criterion is a potential discriminative subspace selection method, which significantly reduces the class separation problem in comparing with the linear dimensionality reduction step in FLDA and its several representative extensions.


IEEE Transactions on Image Processing | 2012

3-D Object Retrieval and Recognition With Hypergraph Analysis

Yue Gao; Meng Wang; Dacheng Tao; Rongrong Ji; Qionghai Dai

View-based 3-D object retrieval and recognition has become popular in practice, e.g., in computer aided design. It is difficult to precisely estimate the distance between two objects represented by multiple views. Thus, current view-based 3-D object retrieval and recognition methods may not perform well. In this paper, we propose a hypergraph analysis approach to address this problem by avoiding the estimation of the distance between objects. In particular, we construct multiple hypergraphs for a set of 3-D objects based on their 2-D views. In these hypergraphs, each vertex is an object, and each edge is a cluster of views. Therefore, an edge connects multiple vertices. We define the weight of each edge based on the similarities between any two views within the cluster. Retrieval and recognition are performed based on the hypergraphs. Therefore, our method can explore the higher order relationship among objects and does not use the distance between objects. We conduct experiments on the National Taiwan University 3-D model dataset and the ETH 3-D object collection. Experimental results demonstrate the effectiveness of the proposed method by comparing with the state-of-the-art methods.


IEEE Transactions on Knowledge and Data Engineering | 2009

Patch Alignment for Dimensionality Reduction

Tianhao Zhang; Dacheng Tao; Xuelong Li; Jie Yang

Spectral analysis-based dimensionality reduction algorithms are important and have been popularly applied in data mining and computer vision applications. To date many algorithms have been develope...


knowledge discovery and data mining | 2006

Beyond streams and graphs: dynamic tensor analysis

Jimeng Sun; Dacheng Tao; Christos Faloutsos

How do we find patterns in author-keyword associations, evolving over time? Or in Data Cubes, with product-branch-customer sales information? Matrix decompositions, like principal component analysis (PCA) and variants, are invaluable tools for mining, dimensionality reduction, feature selection, rule identification in numerous settings like streaming data, text, graphs, social networks and many more. However, they have only two orders, like author and keyword, in the above example.We propose to envision such higher order data as tensors,and tap the vast literature on the topic. However, these methods do not necessarily scale up, let alone operate on semi-infinite streams. Thus, we introduce the dynamic tensor analysis (DTA) method, and its variants. DTA provides a compact summary for high-order and high-dimensional data, and it also reveals the hidden correlations. Algorithmically, we designed DTA very carefully so that it is (a) scalable, (b) space efficient (it does not need to store the past) and (c) fully automatic with no need for user defined parameters. Moreover, we propose STA, a streaming tensor analysis method, which provides a fast, streaming approximation to DTA.We implemented all our methods, and applied them in two real settings, namely, anomaly detection and multi-way latent semantic indexing. We used two real, large datasets, one on network flow data (100GB over 1 month) and one from DBLP (200MB over 25 years). Our experiments show that our methods are fast, accurate and that they find interesting patterns and outliers on the real datasets.


Pattern Analysis and Applications | 2010

A survey of graph edit distance

Xinbo Gao; Bing Xiao; Dacheng Tao; Xuelong Li

Inexact graph matching has been one of the significant research foci in the area of pattern analysis. As an important way to measure the similarity between pairwise graphs error-tolerantly, graph edit distance (GED) is the base of inexact graph matching. The research advance of GED is surveyed in order to provide a review of the existing literatures and offer some insights into the studies of GED. Since graphs may be attributed or non-attributed and the definition of costs for edit operations is various, the existing GED algorithms are categorized according to these two factors and described in detail. After these algorithms are analyzed and their limitations are identified, several promising directions for further research are proposed.


international conference on data mining | 2005

Supervised tensor learning

Dacheng Tao; Xuelong Li; Weiming Hu; Stephen J. Maybank; Xindong Wu

This paper aims to take general tensors as inputs for supervised learning. A supervised tensor learning (STL) framework is established for convex optimization based learning techniques such as support vector machines (SVM) and minimax probability machines (MPM). Within the STL framework, many conventional learning machines can be generalized to take n/sup th/-order tensors as inputs. We also study the applications of tensors to learning machine design and feature extraction by linear discriminant analysis (LDA). Our method for tensor based feature extraction is named the tenor rank-one discriminant analysis (TR1DA). These generalized algorithms have several advantages: 1) reduce the curse of dimension problem in machine learning and data mining; 2) avoid the failure to converge; and 3) achieve better separation between the different categories of samples. As an example, we generalize MPM to its STL version, which is named the tensor MPM (TMPM). TMPM learns a series of tensor projections iteratively. It is then evaluated against the original MPM. Our experiments on a binary classification problem show that TMPM significantly outperforms the original MPM.


systems man and cybernetics | 2010

Multiview Spectral Embedding

Tian Xia; Dacheng Tao; Tao Mei; Yongdong Zhang

In computer vision and multimedia search, it is common to use multiple features from different views to represent an object. For example, to well characterize a natural scene image, it is essential to find a set of visual features to represent its color, texture, and shape information and encode each feature into a vector. Therefore, we have a set of vectors in different spaces to represent the image. Conventional spectral-embedding algorithms cannot deal with such datum directly, so we have to concatenate these vectors together as a new vector. This concatenation is not physically meaningful because each feature has a specific statistical property. Therefore, we develop a new spectral-embedding algorithm, namely, multiview spectral embedding (MSE), which can encode different features in different ways, to achieve a physically meaningful embedding. In particular, MSE finds a low-dimensional embedding wherein the distribution of each view is sufficiently smooth, and MSE explores the complementary property of different views. Because there is no closed-form solution for MSE, we derive an alternating optimization-based iterative algorithm to obtain the low-dimensional embedding. Empirical evaluations based on the applications of image retrieval, video annotation, and document clustering demonstrate the effectiveness of the proposed approach.


IEEE Transactions on Signal Processing | 2012

NeNMF: An Optimal Gradient Method for Nonnegative Matrix Factorization

Naiyang Guan; Dacheng Tao; Zhigang Luo; Bo Yuan

Nonnegative matrix factorization (NMF) is a powerful matrix decomposition technique that approximates a nonnegative matrix by the product of two low-rank nonnegative matrix factors. It has been widely applied to signal processing, computer vision, and data mining. Traditional NMF solvers include the multiplicative update rule (MUR), the projected gradient method (PG), the projected nonnegative least squares (PNLS), and the active set method (AS). However, they suffer from one or some of the following three problems: slow convergence rate, numerical instability and nonconvergence. In this paper, we present a new efficient NeNMF solver to simultaneously overcome the aforementioned problems. It applies Nesterovs optimal gradient method to alternatively optimize one factor with another fixed. In particular, at each iteration round, the matrix factor is updated by using the PG method performed on a smartly chosen search point, where the step size is determined by the Lipschitz constant. Since NeNMF does not use the time consuming line search and converges optimally at rate in optimizing each matrix factor, it is superior to MUR and PG in terms of efficiency as well as approximation accuracy. Compared to PNLS and AS that suffer from numerical instability problem in the worst case, NeNMF overcomes this deficiency. In addition, NeNMF can be used to solve -norm, -norm and manifold regularized NMF with the optimal convergence rate. Numerical experiments on both synthetic and real-world datasets show the efficiency of NeNMF for NMF and its variants comparing to representative NMF solvers. Extensive experiments on document clustering suggest the effectiveness of NeNMF.

Collaboration


Dive into the Dacheng Tao's collaboration.

Top Co-Authors

Avatar

Xuelong Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xuelong Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chang Xu

University of Sydney

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Yu

Hangzhou Dianzi University

View shared research outputs
Researchain Logo
Decentralizing Knowledge