Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik R. Dubberke is active.

Publication


Featured researches published by Erik R. Dubberke.


Infection Control and Hospital Epidemiology | 2007

Recommendations for Surveillance of Clostridium difficile-Associated Disease

L. Clifford McDonald; Bruno Coignard; Erik R. Dubberke; Xiaoyan Song; Teresa C. Horan; Preeta K. Kutty

BACKGROUND The epidemiology of Clostridium difficile-associated disease (CDAD) is changing, with evidence of increased incidence and severity. However, the understanding of the magnitude of and reasons for this change is currently hampered by the lack of standardized surveillance methods. OBJECTIVE AND METHODS An ad hoc C. difficile surveillance working group was formed to develop interim surveillance definitions and recommendations based on existing literature and expert opinion that can help to improve CDAD surveillance and prevention efforts. DEFINITIONS AND RECOMMENDATIONS A CDAD case patient was defined as a patient with symptoms of diarrhea or toxic megacolon combined with a positive result of a laboratory assay and/or endoscopic or histopathologic evidence of pseudomembranous colitis. Recurrent CDAD was defined as repeated episodes within 8 weeks of each other. Severe CDAD was defined by CDAD-associated admission to an intensive care unit, colectomy, or death within 30 days after onset. Case patients were categorized by the setting in which C. difficile was likely acquired, to account for recent evidence that suggests that healthcare facility-associated CDAD may have its onset in the community up to 4 weeks after discharge. Tracking of healthcare facility-onset, healthcare facility-associated CDAD is the minimum surveillance required for healthcare settings; tracking of community-onset, healthcare facility-associated CDAD should be performed only in conjunction with tracking of healthcare facility-onset, healthcare facility-associated CDAD. Community-associated CDAD was defined by symptom onset more than 12 weeks after the last discharge from a healthcare facility. Rates of both healthcare facility-onset, healthcare facility-associated CDAD and community-onset, healthcare facility-associated CDAD should be expressed as case patients per 10,000 patient-days; rates of community-associated CDAD should be expressed as case patients per 100,000 person-years.


Infection Control and Hospital Epidemiology | 2008

Strategies to prevent surgical site infections in acute care hospitals.

Deverick J. Anderson; Keith S. Kaye; David C. Classen; Kathleen M. Arias; Kelly Podgorny; Helen Burstin; David P. Calfee; Susan E. Coffin; Erik R. Dubberke; Victoria Fraser; Dale N. Gerding; Frances A. Griffin; Peter Gross; Michael Klompas; Evelyn Lo; Jonas Marschall; Leonard A. Mermel; Lindsay Nicolle; David A. Pegues; Trish M. Perl; Sanjay Saint; Cassandra D. Salgado; Robert A. Weinstein; Robert R. Wise; Deborah S. Yokoe

Previously published guidelines are available that provide comprehensive recommendations for detecting and preventing healthcare-associated infections. The intent of this document is to highlight practical recommendations in a concise format designed to assist acute care hospitals to implement and prioritize their surgical site infection (SSI) prevention efforts. Refer to the Society for Healthcare Epidemiology of America/Infectious Diseases Society of America “Compendium of Strategies to Prevent Healthcare-Associated Infections” Executive Summary and Introduction and accompanying editorial for additional discussion.1. Burden of SSIs as complications in acute care facilities.a. SSIs occur in 2%-5% of patients undergoing inpatient surgery in the United States.b. Approximately 500,000 SSIs occur each year.2. Outcomes associated with SSIa. Each SSI is associated with approximately 7-10 additional postoperative hospital days.b. Patients with an SSI have a 2-11 times higher risk of death, compared with operative patients without an SSI.i. Seventy-seven percent of deaths among patients with SSI are direcdy attributable to SSI.c. Attributable costs of SSI vary, depending on the type of operative procedure and the type of infecting pathogen; published estimates range from


Infection Control and Hospital Epidemiology | 2008

Strategies to Prevent Central Line-Associated Bloodstream Infections in Acute Care Hospitals

Jonas Marschall; Leonard A. Mermel; David C. Classen; Kathleen M. Arias; Kelly Podgorny; Deverick J. Anderson; Helen Burstin; David P. Calfee; Susan E. Coffin; Erik R. Dubberke; Victoria J. Fraser; Dale N. Gerding; Frances A. Griffin; Peter Gross; Keith S. Kaye; Michael Klompas; Evelyn Lo; Lindsay Nicolle; David A. Pegues; Trish M. Perl; Sanjay Saint; Cassandra D. Salgado; Robert A. Weinstein; Robert A. Wise; Deborah S. Yokoe

3,000 to


Infection Control and Hospital Epidemiology | 2008

Strategies to Prevent Catheter‐Associated Urinary Tract Infections in Acute Care Hospitals

Evelyn Lo; Lindsay E. Nicolle; David C. Classen; Kathleen M. Arias; Kelly Podgorny; Deverick J. Anderson; Helen Burstin; David P. Calfee; Susan E. Coffin; Erik R. Dubberke; Victoria Fraser; Dale N. Gerding; Frances A. Griffin; Peter Gross; Keith S. Kaye; Michael Klompas; Jonas Marschall; Leonard A. Mermel; David A. Pegues; Trish M. Perl; Sanjay Saint; Cassandra D. Salgado; Robert A. Weinstein; Robert J. Wise; Deborah S. Yokoe

29,000.i. SSIs are believed to account for up to


Clinical Infectious Diseases | 2012

Burden of Clostridium difficile on the Healthcare System

Erik R. Dubberke; Margaret A. Olsen

10 billion annually in healthcare expenditures.1. Definitionsa. The Centers for Disease Control and Prevention National Nosocomial Infections Surveillance System and the National Healthcare Safety Network definitions for SSI are widely used.b. SSIs are classified as follows (Figure):i. Superficial incisional (involving only skin or subcutaneous tissue of the incision)ii. Deep incisional (involving fascia and/or muscular layers)iii. Organ/space


Infection Control and Hospital Epidemiology | 2008

Strategies to Prevent Ventilator-Associated Pneumonia in Acute Care Hospitals

Susan E. Coffin; Michael Klompas; David C. Classen; Kathleen M. Arias; Kelly Podgorny; Deverick J. Anderson; Helen Burstin; David P. Calfee; Erik R. Dubberke; Victoria Fraser; Dale N. Gerding; Frances A. Griffin; Peter Gross; Keith S. Kaye; Evelyn Lo; Jonas Marschall; Leonard A. Mermel; Lindsay Nicolle; David A. Pegues; Trish M. Perl; Sanjay Saint; Cassandra D. Salgado; Robert A. Weinstein; Robert J. Wise; Deborah S. Yokoe

Previously published guidelines are available that provide comprehensive recommendations for detecting and preventing healthcare-associated infections. The intent of this document is to highlight practical recommendations in a concise format designed to assist acute care hospitals in implementing and prioritizing their central line–associated bloodstream infection (CLABSI) prevention efforts. Refer to the Society for Healthcare Epidemiology of America/Infectious Diseases Society of America “Compendium of Strategies to Prevent Healthcare-Associated Infections” Executive Summary and Introduction and accompanying editorial for additional discussion.1. Patients at risk for CLABSIs in acute care facilitiesa. Intensive care unit (ICU) population: The risk of CLABSI in ICU patients is high. Reasons for this include the frequent insertion of multiple catheters, the use of specific types of catheters that are almost exclusively inserted in ICU patients and associated with substantial risk (eg, arterial catheters), and the fact that catheters are frequently placed in emergency circumstances, repeatedly accessed each day, and often needed for extended periods.b. Non-ICU population: Although the primary focus of attention over the past 2 decades has been the ICU setting, recent data suggest that the greatest numbers of patients with central lines are in hospital units outside the ICU, where there is a substantial risk of CLABSI.2. Outcomes associated with hospital-acquired CLABSIa. Increased length of hospital stayb. Increased cost; the non-inflation-adjusted attributable cost of CLABSIs has been found to vary from 29,000 per episode


Infection Control and Hospital Epidemiology | 2008

A compendium of strategies to prevent healthcare-associated infections in acute care hospitals.

Deborah S. Yokoe; Leonard A. Mermel; Deverick J. Anderson; Kathleen M. Arias; Helen Burstin; David P. Calfee; Susan E. Coffin; Erik R. Dubberke; Victoria Fraser; Dale N. Gerding; Frances A. Griffin; Peter L. Gross; Keith S. Kaye; Michael Klompas; Evelyn Lo; Jonas Marschall; Lindsay E. Nicolle; David A. Pegues; Trish M. Perl; Kelly Podgorny; Sanjay Saint; Cassandra D. Salgado; Robert A. Weinstein; Robert J. Wise; David C. Classen

Previously published guidelines are available that provide comprehensive recommendations for detecting and preventing healthcare-associated infections. The intent of this document is to highlight practical recommendations in a concise format designed to assist acute care hospitals in implementing and prioritizing their catheter-associated urinary tract infection (CAUTI) prevention efforts. Refer to the Society for Healthcare Epidemiology of America/Infectious Diseases Society of America “Compendium of Strategies to Prevent Healthcare-Associated Infections” Executive Summary and Introduction and accompanying editorial for additional discussion. 1. Burden of CAUTIs a. Urinary tract infection is the most common hospital-acquired infection; 80% of these infections are attributable to an indwelling urethral catheter. b. Twelve to sixteen percent of hospital inpatients will have a urinary catheter at some time during their hospital stay. c. The daily risk of acquisition of urinary infection varies from 3% to 7% when an indwelling urethral catheter remains in situ. 2. Outcomes associated with CAUTI a. Urinary tract infection is the most important adverse outcome of urinary catheter use. Bacteremia and sepsis may occur in a small proportion of infected patients. b. Morbidity attributable to any single episode of catheterization is limited, but the high frequency of catheter use in hospitalized patients means that the cumulative burden of CAUTI is substantial. c. Catheter use is also associated with negative outcomes other than infection, including nonbacterial urethral inflammation, urethral strictures, and mechanical trauma.


Clinical Infectious Diseases | 2007

Clostridium difficile—Associated Disease in a Setting of Endemicity: Identification of Novel Risk Factors

Erik R. Dubberke; Kimberly A. Reske; Yan Yan; Margaret A. Olsen; L. Clifford McDonald; Victoria J. Fraser

There are few high-quality studies of the costs of Clostridium difficile infection (CDI), and the majority of studies focus on the costs of CDI in acute-care facilities. Analysis of the best available data, from 2008, indicates that CDI may have resulted in


Infection Control and Hospital Epidemiology | 2008

Strategies to prevent clostridium difficile infections in acute care hospitals.

Erik R. Dubberke; Dale N. Gerding; David C. Classen; Kathleen M. Arias; Kelly Podgorny; Deverick J. Anderson; Helen Burstin; David P. Calfee; Susan E. Coffin; Victoria J. Fraser; Frances A. Griffin; Peter Gross; Keith S. Kaye; Michael Klompas; Evelyn Lo; Jonas Marschall; Leonard A. Mermel; Lindsay Nicolle; David A. Pegues; Trish M. Perl; Sanjay Saint; Cassandra D. Salgado; Robert A. Weinstein; Robert A. Wise; Deborah S. Yokoe

4.8 billion in excess costs in US acute-care facilities. Other areas of CDI-attributable excess costs that need to be investigated are costs of increased discharges to long-term care facilities, of CDI with onset in long-term care facilities, of recurrent CDI, and of additional adverse events caused by CDI.


Infection Control and Hospital Epidemiology | 2009

Review of Current Literature on the Economic Burden of Clostridium difficile Infection

Erik R. Dubberke; Albert I. Wertheimer

Previously published guidelines are available that provide comprehensive recommendations for detecting and preventing healthcare-associated infections. The intent of this document is to highlight practical recommendations in a concise format designed to assist acute care hospitals in implementing and prioritizing their ventilator-associated pneumonia (VAP) prevention efforts. Refer to the Society for Healthcare Epidemiology of America/Infectious Diseases Society of America “Compendium of Strategies to Prevent Healthcare-Associated Infections” Executive Summary and Introduction and accompanying editorial for additional discussion.1. Occurrence of VAP in acute care facilities.a. VAP is one of the most common infections acquired by adults and children in intensive care units (ICUs).i. In early studies, it was reported that 10%-20% of patients undergoing ventilation developed VAP. More-recent publications report rates of VAP that range from 1 to 4 cases per 1,000 ventilator-days, but rates may exceed 10 cases per 1,000 ventilator-days in some neonatal and surgical patient populations. The results of recent quality improvement initiatives, however, suggest that many cases of VAP might be prevented by careful attention to the process of care.2. Outcomes associated with VAPa. VAP is a cause of significant patient morbidity and mortality, increased utilization of healthcare resources, and excess cost.i. The mortality attributable to VAP may exceed 10%.ii. Patients with VAP require prolonged periods of mechanical ventilation, extended hospitalizations, excess use of antimicrobial medications, and increased direct medical costs.

Collaboration


Dive into the Erik R. Dubberke's collaboration.

Top Co-Authors

Avatar

Kimberly A. Reske

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Victoria J. Fraser

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Carey-Ann D. Burnham

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Margaret A. Olsen

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Dale N. Gerding

Loyola University Chicago

View shared research outputs
Top Co-Authors

Avatar

Tiffany Hink

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jennie H. Kwon

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Deborah S. Yokoe

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

L. Clifford McDonald

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge