Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Damon A. Wheeler is active.

Publication


Featured researches published by Damon A. Wheeler.


Nano Letters | 2011

Sn-Doped Hematite Nanostructures for Photoelectrochemical Water Splitting

Yichuan Ling; Gongming Wang; Damon A. Wheeler; Jin Z. Zhang; Yat Li

We report on the synthesis and characterization of Sn-doped hematite nanowires and nanocorals as well as their implementation as photoanodes for photoelectrochemical water splitting. The hematite nanowires were prepared on a fluorine-doped tin oxide (FTO) substrate by a hydrothermal method, followed by high temperature sintering in air to incorporate Sn, diffused from the FTO substrate, as a dopant. Sn-doped hematite nanocorals were prepared by the same method, by adding tin(IV) chloride as the Sn precursor. X-ray photoelectron spectroscopy analysis confirms Sn(4+) substitution at Fe(3+) sites in hematite, and Sn-dopant levels increase with sintering temperature. Sn dopant serves as an electron donor and increases the carrier density of hematite nanostructures. The hematite nanowires sintered at 800 °C yielded a pronounced photocurrent density of 1.24 mA/cm(2) at 1.23 V vs RHE, which is the highest value observed for hematite nanowires. In comparison to nanowires, Sn-doped hematite nanocorals exhibit smaller feature sizes and increased surface areas. Significantly, they showed a remarkable photocurrent density of 1.86 mA/cm(2) at 1.23 V vs RHE, which is approximately 1.5 times higher than that of the nanowires. Ultrafast spectroscopy studies revealed that there is significant electron-hole recombination within the first few picoseconds, while Sn doping and the change of surface morphology have no major effect on the ultrafast dynamics of the charge carriers on the picosecond time scales. The enhanced photoactivity in Sn-doped hematite nanostructures should be due to the improved electrical conductivity and increased surface area.


Nano Letters | 2011

Facile Synthesis of Highly Photoactive α-Fe2O3-Based Films for Water Oxidation

Gongming Wang; Yichuan Ling; Damon A. Wheeler; Kyle E. George; Kimberly Horsley; C. Heske; Jin Z. Zhang; Yat Li

This work reports a facile method for preparing highly photoactive α-Fe(2)O(3) films as well as their implementation as photoanodes for water oxidation. Transparent α-Fe(2)O(3) films were prepared by a new deposition-annealing (DA) process using nontoxic iron(III) chloride as the Fe precursor, followed by annealing at 550 °C in air. Ti-doped α-Fe(2)O(3) films were prepared by the same method, with titanium butoxide added as the Ti precursor. Impedance measurements show that the Ti-dopant serves as an electron donor and increases the donor density by 2 orders of magnitude. The photoelectrochemical performance of undoped and Ti-doped α-Fe(2)O(3) photoanodes was characterized and optimized through controlled variation of the Fe and Ti precursor concentration, annealing conditions, and the number of DA cycles. Compared to the undoped sample, the photocurrent onset potential of Ti-doped α-Fe(2)O(3) is shifted about 0.1-0.2 V to lower potential, thus improving the photocurrent and incident photon to current conversion efficiency (IPCE) at lower bias voltages. Significantly, the optimized Ti-doped α-Fe(2)O(3) film achieved the highest photocurrent density (1.83 mA/cm(2)) and IPCE values at 1.02 V vs RHE for α-Fe(2)O(3) photoanode. The enhanced photocurrent is attributed to the improved donor density and reduced electron-hole recombination at the time scale beyond a few picoseconds, as a result of Ti doping.


Energy and Environmental Science | 2012

Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties

Damon A. Wheeler; Gongming Wang; Yichuan Ling; Yat Li; Jin Z. Zhang

As one of the most prevalent metal oxides on Earth, iron oxide, especially α-Fe2O3 or hematite, has been the subject of intense research for several decades. In particular, the combination of a relatively small bandgap and related visible light absorption, natural abundance, low cost, and stability under deleterious chemical conditions has made it ideal for many potential applications. However, the short charge carrier lifetime or diffusion length has limited its applicability. Nanostructures of hematite offer the possibility of overcoming some of the limitations through control of the structures and thereby its optical and electronic properties. In this review, we provide an overview of recent progress on the synthesis and characterization of nanostructured hematite, with an emphasis on the charge carrier dynamics and photoelectrochemical properties. Both current challenges and future opportunities are also discussed.


Energy and Environmental Science | 2011

A perspective on solar-driven water splitting with all-oxide hetero-nanostructures

Coleman X. Kronawitter; Lionel Vayssieres; Shaohua Shen; Leijin Guo; Damon A. Wheeler; Jin Z. Zhang; Bonnie R. Antoun; Samuel S. Mao

A perspective on the design of all-oxide heterostructures for application in photoelectrochemical cells for solar water splitting is provided. Particular attention is paid to those structures which possess nanoscale feature dimensionality, as structures of this type are most likely to utilize the benefits afforded by the formation of oxide heterojunctions and likely to show functional behavior relating to the interfacial region. In the context of this discussion, a novel hetero-nanostructure array, based on quantum-confined and visible light-active iron(III) oxide nanostructures and their surface modification with tungsten(VI) oxide, is introduced. The heterostructure architecture is designed to combine the functionality of the consituent phases to address the primary requirements for electrodes enabling the efficient generation of hydrogen using solar energy: visible light activity, chemical stability, appropriate bandedge characteristics, and potential for low-cost fabrication. Photoelectrochemical characterization for solar hydrogen/oxygen generation indicates the presence of unexpected minority carrier transfer dynamics within the oxide hetero-nanostructures, as observed additionally by ultrafast transient absorption spectroscopy.


Advanced Materials | 2013

Exciton Dynamics in Semiconductor Nanocrystals

Damon A. Wheeler; Jin Z. Zhang

This review article provides an overview of recent advances in the study and understanding of dynamics of excitons in semiconductor nanocrystals (NCs) or quantum dots (QDs). Emphasis is placed on the relationship between exciton dynamics and optical properties, both linear and nonlinear. We also focus on the unique aspects of exciton dynamics in semiconductor NCs as compared to those in bulk crystals. Various experimental techniques for probing exciton dynamics, particularly time-resolved laser methods, are reviewed. Relevant models and computational studies are also briefly presented. By comparing different materials systems, a unifying picture is proposed to account for the major dynamic features of excitons in semiconductor QDs. While the specific dynamic processes involved are material-dependent, key processes can be identified for all the materials that include electronic dephasing, intraband relaxation, trapping, and interband recombination of free and trapped charge carriers (electron and hole). Exciton dynamics play a critical role in the fundamental properties and functionalities of nanomaterials of interest for a variety of applications including optical detectors, solar energy conversion, lasers, and sensors. A better understanding of exciton dynamics in nanomaterials is thus important both fundamentally and technologically.


Journal of The Optical Society of America A-optics Image Science and Vision | 2010

High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering.

Xuan Yang; Chao Shi; Damon A. Wheeler; Rebecca Newhouse; Bin Chen; Jin Z. Zhang; Claire Gu

A high-sensitivity molecular sensor using a hollow-core photonic crystal fiber (HCPCF) based on surface-enhanced Raman scattering (SERS) has been experimentally demonstrated and theoretically analyzed. A factor of 100 in sensitivity enhancement is shown in comparison to direct sampling under the same conditions. With a silver nanoparticle colloid as the SERS substrate and Rhodamine 6G as a test molecule, the lowest detectable concentration is 10(-10) M with a liquid-core photonic crystal fiber (LCPCF) probe, and 10(-8) M for direct sampling. The high sensitivity provided by the LCPCF SERS probe is promising for molecular detection in various sensing applications.


Journal of Materials Chemistry | 2011

Highly reproducible synthesis of hollow gold nanospheres with near infrared surface plasmon absorption using PVP as stabilizing agent

Sandra Preciado-Flores; Danchen Wang; Damon A. Wheeler; Rebecca Newhouse; Jennifer K. Hensel; Adam M. Schwartzberg; Lihua Wang; Jun-Jie Zhu; M. Barboza-Flores; Jin Z. Zhang

An improved synthetic method has been designed and demonstrated to reproducibly generate hollow gold nanospheres (HGNs) with strong surface plasmon resonance (SPR) absorption in the near infrared (NIR). The HGNs have been synthesized via galvanic replacement of cobalt with gold while utilizing different amounts of poly(vinylpyrrolidone) (PVP) as a template stabilizing agent. Ninety percent of syntheses performed by this modified method resulted in HGNs with an SPR near 800 nm, which is highly desirable for biomedical applications such as photothermal ablation (PTA) therapy, while other polymers (PAA and PEG) did not. Based on absorption and TEM measurements, PVP stabilizes the cobalt template particles via carbonyl-induced stabilization that slows nucleation and growth of the gold shell allowing for the generation of a reproducibly thin shell, thereby inducing a significant red shift of the SPR to 800 nm. The results are significant to various potential applications of HGNs, e.g. cancer therapy and sensing.


Nano Letters | 2011

Electron enrichment in 3d transition metal oxide hetero-nanostructures.

Coleman X. Kronawitter; Jonathan R. Bakke; Damon A. Wheeler; Wei-Cheng Wang; Chinglin Chang; Bonnie R. Antoun; Jin Z. Zhang; Jinghua Guo; Stacey F. Bent; Samuel S. Mao; Lionel Vayssieres

Direct experimental observation of spontaneous electron enrichment of metal d orbitals in a new transition metal oxide heterostructure with nanoscale dimensionality is reported. Aqueous chemical synthesis and vapor phase deposition are combined to fabricate oriented arrays of high-interfacial-area hetero-nanostructures comprised of titanium oxide and iron oxide nanomaterials. Synchrotron-based soft X-ray spectroscopy techniques with high spectral resolution are utilized to directly probe the titanium and oxygen orbital character of the interfacial regions occupied and unoccupied densities of states. These data demonstrate the interface to possess electrons in Ti 3d bands and an emergent degree of orbital hybridization that is absent in parent oxide reference crystals. The carrier dynamics of the hetero-nanostructures are studied by ultrafast transient absorption spectroscopy, which reveals the presence of a dense manifold of states, the relaxations from which exhibit multiple exponential decays whose magnitudes depend on their energetic positions within the electronic structure.


Journal of Materials Chemistry | 2013

Physical and photoelectrochemical characterization of Ti-doped hematite photoanodes prepared by solution growth

Shaohua Shen; Coleman X. Kronawitter; Damon A. Wheeler; Penghui Guo; Sarah A. Lindley; Jiangang Jiang; Jin Z. Zhang; Liejin Guo; Samuel S. Mao

We present the fabrication and characterization of Ti-doped hematite (α-Fe2O3) films for application as photoanodes in photoelectrochemical (PEC) cells for water splitting. It is demonstrated that Ti doping significantly improves the PEC activity as the photocurrent at 1.0 V vs. Ag/AgCl electrode for a 400 nm thick Ti-doped film (0.66 mA cm−2) was found to be ∼14 times higher than that of an undoped film (0.045 mA cm−2). The films were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and ultrafast transient absorption spectroscopy to obtain information about their structural, electronic, and charge carrier dynamic properties. Based on characterization of the chemical states of the involved elements as well as the charge carrier dynamics of the films with Ti doping, it appears that the photocurrent enhancement is related to an increase in charge carrier density or reduced electron–hole recombination. The highest incident photon conversion efficiency (IPCE) measured for this system was 27.0% at 360 nm at a potential of 1.23 V vs. reversible hydrogen electrode (RHE), which was obtained on a 400 nm thick Ti-doped α-Fe2O3 film.


RSC Advances | 2014

Glucose detection using SERS with multi-branched gold nanostructures in aqueous medium

Andrea Ceja-Fdez; Tzarara López-Luke; Alejandro Torres-Castro; Damon A. Wheeler; Jin Z. Zhang; Elder De la Rosa

Gold nanoparticles (AuNPs), multi-branched gold nanoparticles (MBGNs), and silica-coated MBGNs (MBGNs-silica) were studied for rhodamine B (RB) and α-glucose detection at low concentration. The MBGNs SPR band in the NIR, which is tunable, is useful for SERS that was demonstrated using rhodamine B and α-glucose as probe molecules with detection limits of 50 pM and 5 mM (90 mg dL−1), respectively, much lower than that using regular AuNPs. The SERS signals of RB and α-glucose using MBGNs-silica are further enhanced with respect to AuNPs and MBGNs, which is attributed to the aggregation of the MBGNs and a stronger interaction. In the case of α-glucose, the functionalization process performed to both, α-glucose molecules and MBGNs, improves the interaction and allows measurements at low concentration.

Collaboration


Dive into the Damon A. Wheeler's collaboration.

Top Co-Authors

Avatar

Jin Z. Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar

Yat Li

University of California

View shared research outputs
Top Co-Authors

Avatar

Yichuan Ling

University of California

View shared research outputs
Top Co-Authors

Avatar

Claire Gu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xuan Yang

University of California

View shared research outputs
Top Co-Authors

Avatar

Gongming Wang

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Coleman X. Kronawitter

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Samuel S. Mao

University of California

View shared research outputs
Top Co-Authors

Avatar

Tzarara López-Luke

Centro de Investigaciones en Optica

View shared research outputs
Researchain Logo
Decentralizing Knowledge