Yichuan Ling
University of California, Santa Cruz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yichuan Ling.
Advanced Materials | 2013
Xihong Lu; Minghao Yu; Gongming Wang; Teng Zhai; Shilei Xie; Yichuan Ling; Yexiang Tong; Yat Li
A flexible solid-state asymmetric supercapacitor device with H-TiO(2) @MnO(2) core-shell NWs as the positive electrode and H-TiO(2) @C core-shell NWs as the negative electrode is developed. This device operates in a 1.8 V voltage window and is able to deliver a high specific capacitance of 139.6 F g(-1) and maximum volumetric energy density of 0.30 mWh cm(-3) with excellent cycling performance and good flexibility.
Nano Letters | 2011
Yichuan Ling; Gongming Wang; Damon A. Wheeler; Jin Z. Zhang; Yat Li
We report on the synthesis and characterization of Sn-doped hematite nanowires and nanocorals as well as their implementation as photoanodes for photoelectrochemical water splitting. The hematite nanowires were prepared on a fluorine-doped tin oxide (FTO) substrate by a hydrothermal method, followed by high temperature sintering in air to incorporate Sn, diffused from the FTO substrate, as a dopant. Sn-doped hematite nanocorals were prepared by the same method, by adding tin(IV) chloride as the Sn precursor. X-ray photoelectron spectroscopy analysis confirms Sn(4+) substitution at Fe(3+) sites in hematite, and Sn-dopant levels increase with sintering temperature. Sn dopant serves as an electron donor and increases the carrier density of hematite nanostructures. The hematite nanowires sintered at 800 °C yielded a pronounced photocurrent density of 1.24 mA/cm(2) at 1.23 V vs RHE, which is the highest value observed for hematite nanowires. In comparison to nanowires, Sn-doped hematite nanocorals exhibit smaller feature sizes and increased surface areas. Significantly, they showed a remarkable photocurrent density of 1.86 mA/cm(2) at 1.23 V vs RHE, which is approximately 1.5 times higher than that of the nanowires. Ultrafast spectroscopy studies revealed that there is significant electron-hole recombination within the first few picoseconds, while Sn doping and the change of surface morphology have no major effect on the ultrafast dynamics of the charge carriers on the picosecond time scales. The enhanced photoactivity in Sn-doped hematite nanostructures should be due to the improved electrical conductivity and increased surface area.
Nano Letters | 2013
Ying-Chih Pu; Gongming Wang; Kao-Der Chang; Yichuan Ling; Yin-Kai Lin; Bob C. Fitzmorris; C. W. Liu; Xihong Lu; Yexiang Tong; Jin Z. Zhang; Yung-Jung Hsu; Yat Li
Here we demonstrate that the photoactivity of Au-decorated TiO2 electrodes for photoelectrochemical water oxidation can be effectively enhanced in the entire UV-visible region from 300 to 800 nm by manipulating the shape of the decorated Au nanostructures. The samples were prepared by carefully depositing Au nanoparticles (NPs), Au nanorods (NRs), and a mixture of Au NPs and NRs on the surface of TiO2 nanowire arrays. As compared with bare TiO2, Au NP-decorated TiO2 nanowire electrodes exhibited significantly enhanced photoactivity in both the UV and visible regions. For Au NR-decorated TiO2 electrodes, the photoactivity enhancement was, however, observed in the visible region only, with the largest photocurrent generation achieved at 710 nm. Significantly, TiO2 nanowires deposited with a mixture of Au NPs and NRs showed enhanced photoactivity in the entire UV-visible region. Monochromatic incident photon-to-electron conversion efficiency measurements indicated that excitation of surface plasmon resonance of Au is responsible for the enhanced photoactivity of Au nanostructure-decorated TiO2 nanowires. Photovoltage experiment showed that the enhanced photoactivity of Au NP-decorated TiO2 in the UV region was attributable to the effective surface passivation of Au NPs. Furthermore, 3D finite-difference time domain simulation was performed to investigate the electrical field amplification at the interface between Au nanostructures and TiO2 upon SPR excitation. The results suggested that the enhanced photoactivity of Au NP-decorated TiO2 in the UV region was partially due to the increased optical absorption of TiO2 associated with SPR electrical field amplification. The current study could provide a new paradigm for designing plasmonic metal/semiconductor composite systems to effectively harvest the entire UV-visible light for solar fuel production.
Nano Letters | 2012
Xihong Lu; Gongming Wang; Teng Zhai; Minghao Yu; Shilei Xie; Yichuan Ling; Chaolun Liang; Yexiang Tong; Yat Li
Metal nitrides have received increasing attention as electrode materials for high-performance supercapacitors (SCs). However, most of them are suffered from poor cycling stability. Here we use TiN as an example to elucidate the mechanism causing the capacitance loss. X-ray photoelectron spectroscopy analyses revealed that the instability is due to the irreversible electrochemical oxidation of TiN during the charging/discharging process. Significantly, we demonstrate for the first time that TiN can be stabilized without sacrificing its electrochemical performance by using poly(vinyl alcohol) (PVA)/KOH gel as the electrolyte. The polymer electrolyte suppresses the oxidation reaction on electrode surface. Electrochemical studies showed that the TiN solid-state SCs exhibit extraordinary stability up to 15,000 cycles and achieved a high volumetric energy density of 0.05 mWh/cm(3). The capability of effectively stabilizing nitride materials could open up new opportunities in developing high-performance and flexible SCs.
Nano Letters | 2011
Gongming Wang; Yichuan Ling; Damon A. Wheeler; Kyle E. George; Kimberly Horsley; C. Heske; Jin Z. Zhang; Yat Li
This work reports a facile method for preparing highly photoactive α-Fe(2)O(3) films as well as their implementation as photoanodes for water oxidation. Transparent α-Fe(2)O(3) films were prepared by a new deposition-annealing (DA) process using nontoxic iron(III) chloride as the Fe precursor, followed by annealing at 550 °C in air. Ti-doped α-Fe(2)O(3) films were prepared by the same method, with titanium butoxide added as the Ti precursor. Impedance measurements show that the Ti-dopant serves as an electron donor and increases the donor density by 2 orders of magnitude. The photoelectrochemical performance of undoped and Ti-doped α-Fe(2)O(3) photoanodes was characterized and optimized through controlled variation of the Fe and Ti precursor concentration, annealing conditions, and the number of DA cycles. Compared to the undoped sample, the photocurrent onset potential of Ti-doped α-Fe(2)O(3) is shifted about 0.1-0.2 V to lower potential, thus improving the photocurrent and incident photon to current conversion efficiency (IPCE) at lower bias voltages. Significantly, the optimized Ti-doped α-Fe(2)O(3) film achieved the highest photocurrent density (1.83 mA/cm(2)) and IPCE values at 1.02 V vs RHE for α-Fe(2)O(3) photoanode. The enhanced photocurrent is attributed to the improved donor density and reduced electron-hole recombination at the time scale beyond a few picoseconds, as a result of Ti doping.
Energy and Environmental Science | 2012
Gongming Wang; Yichuan Ling; Hanyu Wang; Xunyu Yang; Changchun Wang; Jin Z. Zhang; Yat Li
Here we report that photostability and photoactivity of WO3 for water oxidation can be simultaneously enhanced by controlled introduction of oxygen vacancies into WO3 in hydrogen atmosphere at elevated temperatures. In comparison to pristine WO3, the hydrogen-treated WO3 nanoflakes show an order of magnitude enhanced photocurrent, and more importantly, exhibit extraordinary stability for water oxidation without loss of photoactivity for at least seven hours. The enhanced photostability is attributed to the formation of substoichiometric WO3−x after hydrogen treatment, which is highly resistive to the re-oxidation and peroxo-species induced dissolution. This work constitutes the first example where WO3 can be stabilized for water oxidation in neutral medium without the need for oxygen evolution catalysts. The demonstration of electrochemically stable WO3 could open up new opportunities for WO3 based photoelectrochemical and photocatalytic applications.
Advanced Materials | 2014
Gongming Wang; Hanyu Wang; Xihong Lu; Yichuan Ling; Minghao Yu; Teng Zhai; Yexiang Tong; Yat Li
Activated carbon cloth is used as an electrode, achieving an excellent areal capacitance of 88 mF/cm(2) (8.8 mF/g) without the use of any other capacitive materials. Significantly, when it is incorporated as part of a symmetric solid-state supercapacitor device, a remarkable charge/discharge rate capability is observed; 50% of the capacitance is retained when the charging rate increases from 10 to 10,000 mV/s.
Energy and Environmental Science | 2012
Damon A. Wheeler; Gongming Wang; Yichuan Ling; Yat Li; Jin Z. Zhang
As one of the most prevalent metal oxides on Earth, iron oxide, especially α-Fe2O3 or hematite, has been the subject of intense research for several decades. In particular, the combination of a relatively small bandgap and related visible light absorption, natural abundance, low cost, and stability under deleterious chemical conditions has made it ideal for many potential applications. However, the short charge carrier lifetime or diffusion length has limited its applicability. Nanostructures of hematite offer the possibility of overcoming some of the limitations through control of the structures and thereby its optical and electronic properties. In this review, we provide an overview of recent progress on the synthesis and characterization of nanostructured hematite, with an emphasis on the charge carrier dynamics and photoelectrochemical properties. Both current challenges and future opportunities are also discussed.
ACS Nano | 2012
Gongming Wang; Xihong Lu; Yichuan Ling; Teng Zhai; Hanyu Wang; Yexiang Tong; Yat Li
Here we report a new strategy to improve the electrochemical stability of vanadium oxide electrodes for pseudocapacitors. Vanadium oxides are known to suffer from severe capacitance loss during charging/discharging cycling, due to chemical dissolution and ion intercalation/deintercalation-induced material pulverization. We demonstrate that these two issues can be addressed by using a neutral pH LiCl/PVA gel electrolyte. The function of the gel electrolyte is twofold: (i) it reduces the chemical dissolution of amphoteric vanadium oxides by minimizing water content and providing a neutral pH medium and (ii) it serves as a matrix to maintain the vanadium oxide nanowire network structure. Vanadium oxide nanowire pseudocapacitors with gel electrolyte exhibit excellent capacitance retention rates of more than 85% after cycling for 5000 cycles, without sacrificing the electrochemical performance of vanadium oxides.
Angewandte Chemie | 2012
Yichuan Ling; Gongming Wang; Jay Reddy; Changchun Wang; Jin Z. Zhang; Yat Li
A promising photoelectrode material for solar-driven water splitting, hematite (a-Fe2O3) is non-toxic, abundant, chemically stable, low-cost, and has a bandgap of approximately 2.1 eV, which accounts for a maximum theoretical solar-tohydrogen (STH) efficiency of 15%. This last property compares favorably with the most studied metal oxide materials for photoeletrochemical (PEC) water splitting, including TiO2, [6–10] ZnO, and WO3. [12–15] However, the reported STH efficiencies of hematite photoelectrodes are substantially lower than the theoretical value, owing to several limiting factors such as poor conductivity, short excited-state lifetime (< 10 ps), poor oxygen evolution reaction kinetics, low absorption coefficient, short diffusion length for holes (2–4 nm), and lower flat-band potential in energy for water splitting. Enormous efforts have been made to overcome these limitations of hematite, including the incorporation of oxygen evolving catalysts to reduce the kinetic barrier for water oxidation on the hematite surface, the development of nanostructures to increase the effective surface area and to reduce diffusion length for carriers, as well as the development of element-doped hematite for improving electrical conductivity and/or light absorption. Recently, we demonstrated that TiO2 nanowires thermally treated in hydrogen showed increased donor density and PEC performance as a result of the formation of oxygen vacancies. We anticipated that creating oxygen vacancy (VO), and thereby Fe, sites in hematite could significantly increase the conductivity of the material through a polaron hopping mechanism. Although VO can be created by sintering hematite in a reductive atmosphere such as hydrogen, it may introduce hydrogen as a dopant into the structure. Additionally, hematite can be easily reduced in hydrogen to produce magnetite (Fe3O4), which is photo-inactive. [27] Herein, we report an alternative method for the preparation of highly conductive and photoactive hematite through thermal decomposition of b-FeOOH in an oxygen-deficient atmosphere (N2+ air). The resulting hematite sample showed substantially enhanced photoactivity compared to the pristine hematite prepared in air. The oxygen content during thermal activation significantly affects the formation of VO and thereby the photoactivity of hematite nanowires for water oxidation. This is the first demonstration of highly photoactive hematite nanowire arrays at a relatively low activation temperature without a dopant element. Akaganeite nanowires were prepared through the hydrolysis of FeCl3 (0.15m) in an environment with a high ionic strength (1m NaNO3) and low pH value (pH 1.5, adjusted by HCl) at 95 8C for 4 h. The resulting yellow film on a fluorine-doped tin oxide (FTO) substrate was covered with nanowire arrays with an average diameter and length of 70 nm and 700 nm, respectively (Figure 1a). X-ray diffraction