Dan Y. Gui
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dan Y. Gui.
Cell | 2015
Lucas B. Sullivan; Dan Y. Gui; Aaron M. Hosios; Lauren N. Bush; Elizaveta Freinkman; Matthew G. Vander Heiden
Mitochondrial respiration is important for cell proliferation; however, the specific metabolic requirements fulfilled by respiration to support proliferation have not been defined. Here, we show that a major role of respiration in proliferating cells is to provide electron acceptors for aspartate synthesis. This finding is consistent with the observation that cells lacking a functional respiratory chain are auxotrophic for pyruvate, which serves as an exogenous electron acceptor. Further, the pyruvate requirement can be fulfilled with an alternative electron acceptor, alpha-ketobutyrate, which provides cells neither carbon nor ATP. Alpha-ketobutyrate restores proliferation when respiration is inhibited, suggesting that an alternative electron acceptor can substitute for respiration to support proliferation. We find that electron acceptors are limiting for producing aspartate, and supplying aspartate enables proliferation of respiration deficient cells in the absence of exogenous electron acceptors. Together, these data argue a major function of respiration in proliferating cells is to support aspartate synthesis.
Cell Metabolism | 2016
Shawn M. Davidson; Thales Papagiannakopoulos; Benjamin A. Olenchock; Julia E. Heyman; Mark A. Keibler; Alba Luengo; Matthew R. Bauer; Abhishek K. Jha; James P. O’Brien; Kerry A. Pierce; Dan Y. Gui; Lucas B. Sullivan; Thomas M. Wasylenko; Lakshmipriya Subbaraj; Christopher R. Chin; Gregory Stephanopolous; Bryan T. Mott; Tyler Jacks; Clary B. Clish; Matthew G. Vander Heiden
Cultured cells convert glucose to lactate, and glutamine is the major source of tricarboxylic acid (TCA)-cycle carbon, but whether the same metabolic phenotype is found in tumors is less studied. We infused mice with lung cancers with isotope-labeled glucose or glutamine and compared the fate of these nutrients in tumor and normal tissue. As expected, lung tumors exhibit increased lactate production from glucose. However, glutamine utilization by both lung tumors and normal lung was minimal, with lung tumors showing increased glucose contribution to the TCA cycle relative to normal lung tissue. Deletion of enzymes involved in glucose oxidation demonstrates that glucose carbon contribution to the TCA cycle is required for tumor formation. These data suggest that understanding nutrient utilization by tumors can predict metabolic dependencies of cancers in vivo. Furthermore, these data argue that the in vivo environment is an important determinant of the metabolic phenotype of cancer cells.
Nature | 2015
Dohoon Kim; Brian Prescott Fiske; Kivanc Birsoy; Elizaveta Freinkman; Kenjiro Kami; Richard Possemato; Yakov Chudnovsky; Michael E. Pacold; Walter W. Chen; Jason R. Cantor; Laura M. Shelton; Dan Y. Gui; Manjae Kwon; Shakti Ramkissoon; Keith L. Ligon; Seong Woo Kang; Matija Snuderl; Matthew G. Vander Heiden; David M. Sabatini
Cancer cells adapt their metabolic processes to support rapid proliferation, but less is known about how cancer cells alter metabolism to promote cell survival in a poorly vascularized tumour microenvironment. Here we identify a key role for serine and glycine metabolism in the survival of brain cancer cells within the ischaemic zones of gliomas. In human glioblastoma multiforme, mitochondrial serine hydroxymethyltransferase (SHMT2) and glycine decarboxylase (GLDC) are highly expressed in the pseudopalisading cells that surround necrotic foci. We find that SHMT2 activity limits that of pyruvate kinase (PKM2) and reduces oxygen consumption, eliciting a metabolic state that confers a profound survival advantage to cells in poorly vascularized tumour regions. GLDC inhibition impairs cells with high SHMT2 levels as the excess glycine not metabolized by GLDC can be converted to the toxic molecules aminoacetone and methylglyoxal. Thus, SHMT2 is required for cancer cells to adapt to the tumour environment, but also renders these cells sensitive to glycine cleavage system inhibition.
Molecular Cell | 2015
Sophia Y. Lunt; Vinayak Muralidhar; Aaron M. Hosios; William J. Israelsen; Dan Y. Gui; Lauren Newhouse; Martin P. Ogrodzinski; Vivian C. Hecht; Kali Xu; Paula N. Marin Acevedo; Daniel P. Hollern; Gary Bellinger; Talya L. Dayton; Stefan Christen; Ilaria Elia; Anh T. Dinh; Gregory Stephanopoulos; Scott R. Manalis; Michael B. Yaffe; Eran R. Andrechek; Sarah Maria Fendt; Matthew G. Vander Heiden
Metabolic regulation influences cell proliferation. The influence of pyruvate kinase isoforms on tumor cells has been extensively studied, but whether PKM2 is required for normal cell proliferation is unknown. We examine how PKM2 deletion affects proliferation and metabolism in nontransformed, nonimmortalized PKM2-expressing primary cells. We find that deletion of PKM2 in primary cells results in PKM1 expression and proliferation arrest. PKM1 expression, rather than PKM2 loss, is responsible for this effect, and proliferation arrest cannot be explained by cell differentiation, senescence, death, changes in gene expression, or prevention of cell growth. Instead, PKM1 expression impairs nucleotide production and the ability to synthesize DNA and progress through the cell cycle. Nucleotide biosynthesis is limiting, as proliferation arrest is characterized by severe thymidine depletion, and supplying exogenous thymine rescues both nucleotide levels and cell proliferation. Thus, PKM1 expression promotes a metabolic state that is unable to support DNA synthesis.
Nature Reviews Cancer | 2016
Lucas B. Sullivan; Dan Y. Gui; Matthew G. Vander Heiden
Altered cell metabolism is a characteristic feature of many cancers. Aside from well-described changes in nutrient consumption and waste excretion, altered cancer cell metabolism also results in changes to intracellular metabolite concentrations. Increased levels of metabolites that result directly from genetic mutations and cancer-associated modifications in protein expression can promote cancer initiation and progression. Changes in the levels of specific metabolites, such as 2-hydroxyglutarate, fumarate, succinate, aspartate and reactive oxygen species, can result in altered cell signalling, enzyme activity and/or metabolic flux. In this Review, we discuss the mechanisms that lead to changes in metabolite concentrations in cancer cells, the consequences of these changes for the cells and how they might be exploited to improve cancer therapy.
Molecular Cell | 2015
Aaron M. Hosios; Brian Prescott Fiske; Dan Y. Gui; Matthew G. Vander Heiden
The role of pyruvate kinase M2 (PKM2) in cell proliferation is controversial. A unique function of PKM2 proposed to be important for the proliferation of some cancer cells involves the direct activity of this enzyme as a protein kinase; however, a detailed biochemical characterization of this activity is lacking. Using [(32)P]-phosphoenolpyruvate (PEP) we examine the direct substrates of PKM2 using recombinant enzyme and in vitro systems where PKM2 is genetically deleted. Labeling of some protein species from [(32)P]-PEP can be observed; however, most were dependent on the presence of ADP, and none were dependent on the presence of PKM2. In addition, we also failed to observe PKM2-dependent transfer of phosphate from ATP directly to protein. These findings argue against a role for PKM2 as a protein kinase.
Science Signaling | 2013
Dan Y. Gui; Caroline A. Lewis; Matthew G. Vander Heiden
Regulation of the metabolic enzyme PKM2 enables cells to switch from a growth-promoting to an energy-producing state. Pyruvate kinase isoform M2 (PKM2) activity is subject to complex allosteric regulation. Recently, serine and SAICAR (succinylaminoimidazolecarboxamide ribose-5′-phosphate) were identified as previously unrecognized activators of PKM2. These findings add additional complexity to how PKM2 is regulated in cells and support the notion that modulating PKM2 activity enables cells to adapt their metabolic state to specific physiological contexts.
eLife | 2017
Alexander Muir; Laura V. Danai; Dan Y. Gui; Chiara Y Waingarten; Caroline A. Lewis; Matthew G. Vander Heiden
Many mammalian cancer cell lines depend on glutamine as a major tri-carboxylic acid (TCA) cycle anaplerotic substrate to support proliferation. However, some cell lines that depend on glutamine anaplerosis in culture rely less on glutamine catabolism to proliferate in vivo. We sought to understand the environmental differences that cause differential dependence on glutamine for anaplerosis. We find that cells cultured in adult bovine serum, which better reflects nutrients available to cells in vivo, exhibit decreased glutamine catabolism and reduced reliance on glutamine anaplerosis compared to cells cultured in standard tissue culture conditions. We find that levels of a single nutrient, cystine, accounts for the differential dependence on glutamine in these different environmental contexts. Further, we show that cystine levels dictate glutamine dependence via the cystine/glutamate antiporter xCT/SLC7A11. Thus, xCT/SLC7A11 expression, in conjunction with environmental cystine, is necessary and sufficient to increase glutamine catabolism, defining important determinants of glutamine anaplerosis and glutaminase dependence in cancer.
Chemistry & Biology | 2017
Alba Luengo; Dan Y. Gui; Matthew G. Vander Heiden
Metabolic reprogramming contributes to tumor development and introduces metabolic liabilities that can be exploited to treat cancer. Chemotherapies targeting metabolism have been effective cancer treatments for decades, and the success of these therapies demonstrates that a therapeutic window exists to target malignant metabolism. New insights into the differential metabolic dependencies of tumors have provided novel therapeutic strategies to exploit altered metabolism, some of which are being evaluated in preclinical models or clinical trials. Here, we review our current understanding of cancer metabolism and discuss how this might guide treatments targeting the metabolic requirements of tumor cells.
Molecular Pharmaceutics | 2015
Nicole J. Yang; David V. Liu; Demetra Sklaviadis; Dan Y. Gui; Matthew G. Vander Heiden; K. Dane Wittrup
Perfringolysin O (PFO) is a member of the cholesterol-dependent cytolysin (CDC) family of bacterial pore-forming proteins, which are highly efficient in delivering exogenous proteins to the cytoplasm. However, the indiscriminate and potent cytotoxicity of PFO limits its practical use as an intracellular delivery system. In this study, we describe the design and engineering of a bispecific, neutralizing antibody against PFO, which targets reversibly attenuated PFO to endocytic compartments via receptor-mediated internalization. This PFO-based system efficiently mediated the endosomal release of a co-targeted gelonin construct with high specificity and minimal toxicity in vitro. Consequently, the therapeutic window of PFO was improved by more than 5 orders of magnitude. Our results demonstrating that the activity of pore-forming proteins can be controlled by antibody-mediated neutralization present a novel strategy for utilizing these potent membrane-lytic agents as a safe and effective intracellular delivery vehicle.