Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel A. Dworkis is active.

Publication


Featured researches published by Daniel A. Dworkis.


PLOS ONE | 2012

Genetic Signatures of Exceptional Longevity in Humans

Paola Sebastiani; Nadia Solovieff; Andrew T. DeWan; Kyle M. Walsh; Annibale Alessandro Puca; Stephen W. Hartley; Efthymia Melista; Stacy L. Andersen; Daniel A. Dworkis; Jemma B. Wilk; Richard H. Myers; Martin H. Steinberg; Monty Montano; Clinton T. Baldwin; Josephine Hoh; Thomas T. Perls

Like most complex phenotypes, exceptional longevity is thought to reflect a combined influence of environmental (e.g., lifestyle choices, where we live) and genetic factors. To explore the genetic contribution, we undertook a genome-wide association study of exceptional longevity in 801 centenarians (median age at death 104 years) and 914 genetically matched healthy controls. Using these data, we built a genetic model that includes 281 single nucleotide polymorphisms (SNPs) and discriminated between cases and controls of the discovery set with 89% sensitivity and specificity, and with 58% specificity and 60% sensitivity in an independent cohort of 341 controls and 253 genetically matched nonagenarians and centenarians (median age 100 years). Consistent with the hypothesis that the genetic contribution is largest with the oldest ages, the sensitivity of the model increased in the independent cohort with older and older ages (71% to classify subjects with an age at death>102 and 85% to classify subjects with an age at death>105). For further validation, we applied the model to an additional, unmatched 60 centenarians (median age 107 years) resulting in 78% sensitivity, and 2863 unmatched controls with 61% specificity. The 281 SNPs include the SNP rs2075650 in TOMM40/APOE that reached irrefutable genome wide significance (posterior probability of association = 1) and replicated in the independent cohort. Removal of this SNP from the model reduced the accuracy by only 1%. Further in-silico analysis suggests that 90% of centenarians can be grouped into clusters characterized by different “genetic signatures” of varying predictive values for exceptional longevity. The correlation between 3 signatures and 3 different life spans was replicated in the combined replication sets. The different signatures may help dissect this complex phenotype into sub-phenotypes of exceptional longevity.


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2012

Health span approximates life span among many supercentenarians: compression of morbidity at the approximate limit of life span.

Stacy L. Andersen; Paola Sebastiani; Daniel A. Dworkis; Lori Feldman; Thomas T. Perls

We analyze the relationship between age of survival, morbidity, and disability among centenarians (age 100-104 years), semisupercentenarians (age 105-109 years), and supercentenarians (age 110-119 years). One hundred and four supercentenarians, 430 semisupercentenarians, 884 centenarians, 343 nonagenarians, and 436 controls were prospectively followed for an average of 3 years (range 0-13 years). The older the age group, generally, the later the onset of diseases, such as cancer, cardiovascular disease, dementia, and stroke, as well as of cognitive and functional decline. The hazard ratios for these individual diseases became progressively less with older and older age, and the relative period of time spent with disease was lower with increasing age group. We observed a progressive delay in the age of onset of physical and cognitive function impairment, age-related diseases, and overall morbidity with increasing age. As the limit of human life span was effectively approached with supercentenarians, compression of morbidity was generally observed.


Blood | 2010

Fetal hemoglobin in sickle cell anemia: genome-wide association studies suggest a regulatory region in the 5′ olfactory receptor gene cluster

Nadia Solovieff; Jacqueline N. Milton; Stephen W. Hartley; Richard Sherva; Paola Sebastiani; Daniel A. Dworkis; Elizabeth S. Klings; Lindsay A. Farrer; Melanie E. Garrett; Allison E. Ashley-Koch; Marilyn J. Telen; Supan Fucharoen; Shau Yin Ha; Chi Kong Li; David H.K. Chui; Clinton T. Baldwin; Martin H. Steinberg

In a genome-wide association study of 848 blacks with sickle cell anemia, we identified single nucleotide polymorphisms (SNPs) associated with fetal hemoglobin concentration. The most significant SNPs in a discovery sample were tested in a replication set of 305 blacks with sickle cell anemia and in subjects with hemoglobin E or beta thalassemia trait from Thailand and Hong Kong. A novel region on chromosome 11 containing olfactory receptor genes OR51B5 and OR51B6 was identified by 6 SNPs (lowest P = 4.7E-08) and validated in the replication set. An additional olfactory receptor gene, OR51B2, was identified by a novel SNP set enrichment analysis. Genome-wide association studies also validated a previously identified SNP (rs766432) in BCL11A, a gene known to affect fetal hemoglobin levels (P = 2.6E-21) and in Thailand and Hong Kong subjects. Elements within the olfactory receptor gene cluster might play a regulatory role in gamma-globin gene expression.


American Journal of Hematology | 2009

Genetic modifiers of the severity of sickle cell anemia identified through a genome-wide association study

Paola Sebastiani; Nadia Solovieff; Stephen W. Hartley; Jacqueline N. Milton; Alberto Riva; Daniel A. Dworkis; Efthymia Melista; Elizabeth S. Klings; Melanie E. Garrett; Marilyn J. Telen; Allison E. Ashley-Koch; Clinton T. Baldwin; Martin H. Steinberg

We conducted a genome‐wide association study (GWAS) to discover single nucleotide polymorphisms (SNPs) associated with the severity of sickle cell anemia in 1,265 patients with either “severe” or “mild” disease based on a network model of disease severity. We analyzed data using single SNP analysis and a novel SNP set enrichment analysis (SSEA) developed to discover clusters of associated SNPs. Single SNP analysis discovered 40 SNPs that were strongly associated with sickle cell severity (odds for association >1,000); of the 32 that we could analyze in an independent set of 163 patients, five replicated, eight showed consistent effects although failed to reach statistical significance, whereas 19 did not show any convincing association. Among the replicated associations are SNPs in KCNK6 a K+ channel gene. SSEA identified 27 genes with a strong enrichment of significant SNPs (P < 10−6); 20 were replicated with varying degrees of confidence. Among the novel findings identified by SSEA is the telomere length regulator gene TNKS. These studies are the first to use GWAS to understand the genetic diversity that accounts the phenotypic heterogeneity sickle cell anemia as estimated by an integrated model of severity. Additional validation, resequencing, and functional studies to understand the biology and reveal mechanisms by which candidate genes might have their effects are the future goals of this work. Am. J. Hematol., 2010.


American Journal of Hematology | 2009

Genome-wide association studies and the genetic dissection of complex traits

Paola Sebastiani; Nadia Timofeev; Daniel A. Dworkis; Thomas T. Perls; Martin H. Steinberg

The availability of affordable high throughput technology for parallel genotyping has opened the field of genetics to genome‐wide association studies (GWAS), and in the last few years hundreds of articles reporting results of GWAS for a variety of heritable traits have been published. What do these results tell us? Although GWAS have discovered a few hundred reproducible associations, this number is underwhelming in relation to the huge amount of data produced, and challenges the conjecture that common variants may be the genetic causes of common diseases. We argue that the massive amount of genetic data that result from these studies remains largely unexplored and unexploited because of the challenge of mining and modeling enormous data sets, the difficulty of using nontraditional computational techniques and the focus of accepted statistical analyses on controlling the false positive rate rather than limiting the false negative rate. In this article, we will review the common approach to analysis of GWAS data and then discuss options to learn more from these data. We will use examples from our ongoing studies of sickle cell anemia and also GWAS in multigenic traits. Am. J. Hematol., 2009.


PLOS ONE | 2012

A Genome-Wide Association Study of Total Bilirubin and Cholelithiasis Risk in Sickle Cell Anemia

Jacqueline N. Milton; Paola Sebastiani; Nadia Solovieff; Stephen W. Hartley; Pallav Bhatnagar; Dan E. Arking; Daniel A. Dworkis; James F. Casella; Emily Barron-Casella; Christopher J. Bean; W. Craig Hooper; Michael R. DeBaun; Melanie E. Garrett; Karen Soldano; Marilyn J. Telen; Allison E. Ashley-Koch; Mark T. Gladwin; Clinton T. Baldwin; Martin H. Steinberg; Elizabeth S. Klings

Serum bilirubin levels have been associated with polymorphisms in the UGT1A1 promoter in normal populations and in patients with hemolytic anemias, including sickle cell anemia. When hemolysis occurs circulating heme increases, leading to elevated bilirubin levels and an increased incidence of cholelithiasis. We performed the first genome-wide association study (GWAS) of bilirubin levels and cholelithiasis risk in a discovery cohort of 1,117 sickle cell anemia patients. We found 15 single nucleotide polymorphisms (SNPs) associated with total bilirubin levels at the genome-wide significance level (p value <5×10−8). SNPs in UGT1A1, UGT1A3, UGT1A6, UGT1A8 and UGT1A10, different isoforms within the UGT1A locus, were identified (most significant rs887829, p = 9.08×10−25). All of these associations were validated in 4 independent sets of sickle cell anemia patients. We tested the association of the 15 SNPs with cholelithiasis in the discovery cohort and found a significant association (most significant p value 1.15×10−4). These results confirm that the UGT1A region is the major regulator of bilirubin metabolism in African Americans with sickle cell anemia, similar to what is observed in other ethnicities.


American Journal of Hematology | 2011

Severe sickle cell anemia is associated with increased plasma levels of TNF-R1 and VCAM-1.

Daniel A. Dworkis; Elizabeth S. Klings; Nadia Solovieff; Guihua Li; Jacqueline N. Milton; Stephen W. Hartley; Efthymia Melista; Jason Parente; Paola Sebastiani; Martin H. Steinberg; Clinton T. Baldwin

Sickle cell anemia (SCA, HBB glu6val) is characterized by multiple complications and a high degree of phenotypic variability: some subjects have only sporadic pain crises and few acute hospitalizations, while others experience multiple serious complications, high levels of morbidity, and accelerated mortality [1]. The tumor necrosis factor-α (TNF-α) signaling pathway plays important roles in inflammation and the immune response; variation in this pathway might be expected to modify the overall severity of SCA through the pathways effects on the vascular endothelium [2,3]. We examined plasma biomarkers of TNF-α activity and endothelial cell activation for associations with SCA severity in 24 adults (12 mild, 12 severe). Two biomarkers, tumor necrosis factor-α receptor-1 (TNF-R1) and vascular cell adhesion molecule-1 (VCAM-1) were significantly higher in subjects with severe SCA. Along with these biomarker differences, we also examined data from a genome-wide association study (GWAS) using SCA severity as a disease phenotype, and found evidence of genetic association between disease severity and a single nucleotide polymorphism (SNP) in VCAM1, which codes for VCAM-1, and several SNPs in ARFGEF2, a gene involved in TNF-R1 release [4].


PLOS ONE | 2016

Accuracy of Inferior Vena Cava Ultrasound for Predicting Dehydration in Children with Acute Diarrhea in Resource-Limited Settings

Payal Modi; Justin Glavis-Bloom; Sabiha Nasrin; Allysia Guy; Erika P. Chowa; Nathan Dvor; Daniel A. Dworkis; Michael Oh; David Silvestri; Stephen Strasberg; Soham Rege; Vicki E. Noble; Nur H. Alam; Adam C. Levine

Introduction Although dehydration from diarrhea is a leading cause of morbidity and mortality in children under five, existing methods of assessing dehydration status in children have limited accuracy. Objective To assess the accuracy of point-of-care ultrasound measurement of the aorta-to-IVC ratio as a predictor of dehydration in children. Methods A prospective cohort study of children under five years with acute diarrhea was conducted in the rehydration unit of the International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b). Ultrasound measurements of aorta-to-IVC ratio and dehydrated weight were obtained on patient arrival. Percent weight change was monitored during rehydration to classify children as having “some dehydration” with weight change 3–9% or “severe dehydration” with weight change > 9%. Logistic regression analysis and Receiver-Operator Characteristic (ROC) curves were used to evaluate the accuracy of aorta-to-IVC ratio as a predictor of dehydration severity. Results 850 children were enrolled, of which 771 were included in the final analysis. Aorta to IVC ratio was a significant predictor of the percent dehydration in children with acute diarrhea, with each 1-point increase in the aorta to IVC ratio predicting a 1.1% increase in the percent dehydration of the child. However, the area under the ROC curve (0.60), sensitivity (67%), and specificity (49%), for predicting severe dehydration were all poor. Conclusions Point-of-care ultrasound of the aorta-to-IVC ratio was statistically associated with volume status, but was not accurate enough to be used as an independent screening tool for dehydration in children under five years presenting with acute diarrhea in a resource-limited setting.


PLOS ONE | 2017

Geospatial analysis of emergency department visits for targeting community-based responses to the opioid epidemic

Daniel A. Dworkis; Lauren Taylor; David A. Peak; Benjamin Bearnot

The opioid epidemic in the United States carries significant morbidity and mortality and requires a coordinated response among emergency providers, outpatient providers, public health departments, and communities. Anecdotally, providers across the spectrum of care at Massachusetts General Hospital (MGH) in Boston, MA have noticed that Charlestown, a community in northeast Boston, has been particularly impacted by the opioid epidemic and needs both emergency and longer-term resources. We hypothesized that geospatial analysis of the home addresses of patients presenting to the MGH emergency department (ED) with opioid-related emergencies might identify “hot spots” of opioid-related healthcare needs within Charlestown that could then be targeted for further investigation and resource deployment. Here, we present a geospatial analysis at the United States census tract level of the home addresses of all patients who presented to the MGH ED for opioid-related emergency visits between 7/1/2012 and 6/30/2015, including 191 visits from 100 addresses in Charlestown, MA. Among the six census tracts that comprise Charlestown, we find a 9.5-fold difference in opioid-related ED visits, with 45% of all opioid-related visits from Charlestown originating in tract 040401. The signal from this census tract remains strong after adjusting for population differences between census tracts, and while this tract is one of the higher utilizing census tracts in Charlestown of the MGH ED for all cause visits, it also has a 2.9-fold higher rate of opioid-related visits than the remainder of Charlestown. Identifying this hot spot of opioid-related emergency needs within Charlestown may help re-distribute existing resources efficiently, empower community and ED-based physicians to advocate for their patients, and serve as a catalyst for partnerships between MGH and local community groups. More broadly, this analysis demonstrates that EDs can use geospatial analysis to address the emergency and longer-term health needs of the communities they are designed to serve.


Western Journal of Emergency Medicine | 2016

Reaching Out of the Box: Effective Emergency Care Requires Looking Outside the Emergency Department.

Daniel A. Dworkis; David A. Peak; Jason Ahn; Tony A. Joseph; Edward Bernstein; Eric S. Nadel

Patients do not start to exist when they arrive at the door of our emergency departments (ED), nor do they stop existing when they leave. Instead, before they fall ill or become injured they live and exist somewhere and when they are discharged from our care they will likely return to that same somewhere. As emergency providers (EPs), our attention must be focused on the patients in front of us, but fundamentally the details of this “somewhere” directly affect our ability to provide safe and effective emergency care. Specifically, both patient-specific factors like homelessness, immigration status, living situation, or insurance coverage, and structural factors arising from broader community and societal forces like food deserts, community violence, and poor housing quality can strongly impact both emergency presentations and our ability to safely and effectively discharge patients. Here, we argue that our duty as EPs extends beyond the four walls of our EDs into life in our communities, and that understanding and addressing the unique strengths and needs of the communities we serve is a crucial component of our ability to provide effective emergency care.

Collaboration


Dive into the Daniel A. Dworkis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge