Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Bouyer is active.

Publication


Featured researches published by Daniel Bouyer.


The EMBO Journal | 2011

Integrative epigenomic mapping defines four main chromatin states in Arabidopsis

François Roudier; Ikhlak Ahmed; Caroline Bérard; Alexis Sarazin; Tristan Mary-Huard; Sandra Cortijo; Daniel Bouyer; Erwann Caillieux; Evelyne Duvernois-Berthet; Liza Al-Shikhley; Laurène Giraut; Barbara Després; Stéphanie Drevensek; Fredy Barneche; Sandra Dèrozier; Véronique Brunaud; Sébastien Aubourg; Arp Schnittger; Chris Bowler; Marie-Laure Martin-Magniette; Stéphane Robin; Michel Caboche; Vincent Colot

Post‐translational modification of histones and DNA methylation are important components of chromatin‐level control of genome activity in eukaryotes. However, principles governing the combinatorial association of chromatin marks along the genome remain poorly understood. Here, we have generated epigenomic maps for eight histone modifications (H3K4me2 and 3, H3K27me1 and 2, H3K36me3, H3K56ac, H4K20me1 and H2Bub) in the model plant Arabidopsis and we have combined these maps with others, produced under identical conditions, for H3K9me2, H3K9me3, H3K27me3 and DNA methylation. Integrative analysis indicates that these 12 chromatin marks, which collectively cover ∼90% of the genome, are present at any given position in a very limited number of combinations. Moreover, we show that the distribution of the 12 marks along the genomic sequence defines four main chromatin states, which preferentially index active genes, repressed genes, silent repeat elements and intergenic regions. Given the compact nature of the Arabidopsis genome, these four indexing states typically translate into short chromatin domains interspersed with each other. This first combinatorial view of the Arabidopsis epigenome points to simple principles of organization as in metazoans and provides a framework for further studies of chromatin‐based regulatory mechanisms in plants.


PLOS Genetics | 2011

Polycomb Repressive Complex 2 Controls the Embryo-to-Seedling Phase Transition

Daniel Bouyer; François Roudier; Maren Heese; Ellen D. Andersen; Delphine Gey; Moritz K. Nowack; Justin Goodrich; Jean-Pierre Renou; Paul E. Grini; Vincent Colot; Arp Schnittger

Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive chromatin mark. PRC2 composition is conserved from humans to plants, but the function of PRC2 during the early stage of plant life is unclear beyond the fact that it is required for the development of endosperm, a nutritive tissue that supports embryo growth. Circumventing the requirement of PRC2 in endosperm allowed us to generate viable homozygous null mutants for FERTILIZATION INDEPENDENT ENDOSPERM (FIE), which is the single Arabidopsis homolog of Extra Sex Combs, an indispensable component of Drosophila and mammalian PRC2. Here we show that H3K27me3 deposition is abolished genome-wide in fie mutants demonstrating the essential function of PRC2 in placing this mark in plants as in animals. In contrast to animals, we find that PRC2 function is not required for initial body plan formation in Arabidopsis. Rather, our results show that fie mutant seeds exhibit enhanced dormancy and germination defects, indicating a deficiency in terminating the embryonic phase. After germination, fie mutant seedlings switch to generative development that is not sustained, giving rise to neoplastic, callus-like structures. Further genome-wide studies showed that only a fraction of PRC2 targets are transcriptionally activated in fie seedlings and that this activation is accompanied in only a few cases with deposition of H3K4me3, a mark associated with gene activity and considered to act antagonistically to H3K27me3. Up-regulated PRC2 target genes were found to act at different hierarchical levels from transcriptional master regulators to a wide range of downstream targets. Collectively, our findings demonstrate that PRC2-mediated regulation represents a robust system controlling developmental phase transitions, not only from vegetative phase to flowering but also especially from embryonic phase to the seedling stage.


The Plant Cell | 2003

Misexpression of the Cyclin-Dependent Kinase Inhibitor ICK1/KRP1 in Single-Celled Arabidopsis Trichomes Reduces Endoreduplication and Cell Size and Induces Cell Death

Arp Schnittger; Christina Weinl; Daniel Bouyer; Ulrike Schöbinger; Martin Hülskamp

A positive correlation between cell size and DNA content has been recognized in many plant cell types. Conversely, misexpression of a dominant-negative cyclin-dependent kinase (CDK) or CDK inhibitor proteins (ICK/KRPs) in Arabidopsis and tobacco leaves has revealed that cell growth can be uncoupled from cell cycle progression and DNA content. However, cell growth also appears to be controlled in a non-cell-autonomous manner by organ size, making it difficult in a ubiquitous expression assay to judge the cell-autonomous function of putative cell growth regulators. Here, we investigated the function of the CDK inhibitor ICK1/KRP1 on cell growth and differentiation independent of any compensatory influence of an organ context using Arabidopsis trichomes as a model system. By analyzing cell size with respect to DNA content, we dissected cell growth in a DNA-dependent and a DNA-independent process. We further found that ICK1/KRP1 misexpression interfered with differentiation and induced cell death, linking cell cycle progression, differentiation, and cell death in plants. The function of ICK1/KRP1 in planta was found to be dependent on a C-terminal domain and regulated negatively by an N-terminal domain. Finally, we identified CDKA;1 and a D-type cyclin as possible targets of ICK1/KRP1 expression in vivo.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Ectopic D-type cyclin expression induces not only DNA replication but also cell division in Arabidopsis trichomes.

Arp Schnittger; Ulrike Schöbinger; Daniel Bouyer; Christina Weinl; York-Dieter Stierhof; Martin Hülskamp

Although the mechanisms controlling the two cell-cycle checkpoints G1-S and G2-M are well studied, it remains elusive how they are linked in higher eukaryotes. In animals, D-type cyclins have been implicated in the control of cell-cycle progression in mitotic as well as in endoreduplicating cells. By contrast, we show that the expression of the D-type cyclin CYCD3;1 in endoreduplicating Arabidopsis trichome cells not only induced DNA replication but also cell divisions.


PLOS Biology | 2008

Two-dimensional patterning by a trapping/depletion mechanism: The role of TTG1 and GL3 in Arabidopsis trichome formation

Daniel Bouyer; Florian Geier; Friedrich Kragler; Arp Schnittger; Martina Pesch; Katja Wester; Rachappa Balkunde; Jens Timmer; Christian Fleck; Martin Hülskamp

Trichome patterning in Arabidopsis serves as a model system to study how single cells are selected within a field of initially equivalent cells. Current models explain this pattern by an activator–inhibitor feedback loop. Here, we report that also a newly discovered mechanism is involved by which patterning is governed by the removal of the trichome-promoting factor TRANSPARENT TESTA GLABRA1 (TTG1) from non-trichome cells. We demonstrate by clonal analysis and misexpression studies that Arabidopsis TTG1 can act non-cell-autonomously and by microinjection experiments that TTG1 protein moves between cells. While TTG1 is expressed ubiquitously, TTG1–YFP protein accumulates in trichomes and is depleted in the surrounding cells. TTG1–YFP depletion depends on GLABRA3 (GL3), suggesting that the depletion is governed by a trapping mechanism. To study the potential of the observed trapping/depletion mechanism, we formulated a mathematical model enabling us to evaluate the relevance of each parameter and to identify parameters explaining the paradoxical genetic finding that strong ttg1 alleles are glabrous, while weak alleles exhibit trichome clusters.


Developmental Cell | 2012

Genetic Framework of Cyclin-Dependent Kinase Function in Arabidopsis

Moritz K. Nowack; Hirofumi Harashima; Nico Dissmeyer; Xin’Ai Zhao; Daniel Bouyer; Annika K. Weimer; Freya De Winter; Fang Yang; Arp Schnittger

Cyclin-dependent kinases (CDKs) are at the heart of eukaryotic cell-cycle control. The yeast Cdc2/CDC28 PSTAIRE kinase and its orthologs such as the mammalian Cdk1 have been found to be indispensable for cell-cycle progression in all eukaryotes investigated so far. CDKA;1 is the only PSTAIRE kinase in the flowering plant Arabidopsis and can rescue Cdc2/CDC28 mutants. Here, we show that cdka;1 null mutants are viable but display specific cell-cycle and developmental defects, e.g., in S phase entry and stem cell maintenance. We unravel that the crucial function of CDKA;1 is the control of the plant Retinoblastoma homolog RBR1 and that codepletion of RBR1 and CDKA;1 rescued most defects of cdka;1 mutants. Our work further revealed a basic cell-cycle control system relying on two plant-specific B1-type CDKs, and the triple cdk mutants displayed an early germline arrest. Taken together, our data indicate divergent functional differentiation of Cdc2-type kinases during eukaryote evolution.


PLOS Genetics | 2012

A General G1/S-Phase Cell-Cycle Control Module in the Flowering Plant Arabidopsis thaliana

Xin’Ai Zhao; Hirofumi Harashima; Nico Dissmeyer; Stefan Pusch; Annika K. Weimer; Jonathan Bramsiepe; Daniel Bouyer; Svenja Rademacher; Moritz K. Nowack; Bela Novak; Stefanie Sprunck; Arp Schnittger

The decision to replicate its DNA is of crucial importance for every cell and, in many organisms, is decisive for the progression through the entire cell cycle. A comparison of animals versus yeast has shown that, although most of the involved cell-cycle regulators are divergent in both clades, they fulfill a similar role and the overall network topology of G1/S regulation is highly conserved. Using germline development as a model system, we identified a regulatory cascade controlling entry into S phase in the flowering plant Arabidopsis thaliana, which, as a member of the Plantae supergroup, is phylogenetically only distantly related to Opisthokonts such as yeast and animals. This module comprises the Arabidopsis homologs of the animal transcription factor E2F, the plant homolog of the animal transcriptional repressor Retinoblastoma (Rb)-related 1 (RBR1), the plant-specific F-box protein F-BOX-LIKE 17 (FBL17), the plant specific cyclin-dependent kinase (CDK) inhibitors KRPs, as well as CDKA;1, the plant homolog of the yeast and animal Cdc2+/Cdk1 kinases. Our data show that the principle of a double negative wiring of Rb proteins is highly conserved, likely representing a universal mechanism in eukaryotic cell-cycle control. However, this negative feedback of Rb proteins is differently implemented in plants as it is brought about through a quadruple negative regulation centered around the F-box protein FBL17 that mediates the degradation of CDK inhibitors but is itself directly repressed by Rb. Biomathematical simulations and subsequent experimental confirmation of computational predictions revealed that this regulatory circuit can give rise to hysteresis highlighting the here identified dosage sensitivity of CDK inhibitors in this network.


Plant Physiology | 2003

The Arabidopsis STICHEL Gene Is a Regulator of Trichome Branch Number and Encodes a Novel Protein

Hilmar Ilgenfritz; Daniel Bouyer; Arp Schnittger; Jaideep Mathur; Victor Kirik; Birgit Schwab; Nam-Hai Chua; Gerd Jürgens; Martin Hülskamp

Here, we analyze the STICHEL(STI) gene, which plays an important role in the regulation of branch number of the unicellular trichomes in Arabidopsis. We have isolated the STI locus by positional cloning and confirmed the identity by sequencing seven independent sti alleles. The STI gene encodes a protein of 1,218 amino acid residues containing a domain with sequence similarity to the ATP-binding eubacterial DNA-polymerase III γ-subunits. Because endoreduplication was found to be normal insti mutants the molecular function of STIin cell morphogenesis is not linked to DNA replication and, therefore, postulated to represent a novel pathway. Northern-blot analysis shows that STI is expressed in all organs suggesting thatSTI function is not trichome specific. The analysis ofsti alleles and transgenic lines overexpressingSTI suggests that STI regulates branching in a dosage-dependent manner.


The Plant Cell | 2012

RETINOBLASTOMA RELATED1 Regulates Asymmetric Cell Divisions in Arabidopsis

Annika K. Weimer; Moritz K. Nowack; Daniel Bouyer; Xin’Ai Zhao; Hirofumi Harashima; Sadaf Naseer; Freya De Winter; Nico Dissmeyer; Niko Geldner; Arp Schnittger

Formative cell divisions produce daughter cells with different identities and are of key importance for the development of multicellular organisms. Here, formative divisions in the root and shoot of Arabidopsis are shown to be modulated by a common mechanism that relies on the activity level of a core cell cycle regulator that integrates cell proliferation with cell differentiation. Formative, also called asymmetric, cell divisions produce daughter cells with different identities. Like other divisions, formative divisions rely first of all on the cell cycle machinery with centrally acting cyclin-dependent kinases (CDKs) and their cyclin partners to control progression through the cell cycle. However, it is still largely obscure how developmental cues are translated at the cellular level to promote asymmetric divisions. Here, we show that formative divisions in the shoot and root of the flowering plant Arabidopsis thaliana are controlled by a common mechanism that relies on the activity level of the Cdk1 homolog CDKA;1, with medium levels being sufficient for symmetric divisions but high levels being required for formative divisions. We reveal that the function of CDKA;1 in asymmetric cell divisions operates through a transcriptional regulation system that is mediated by the Arabidopsis Retinoblastoma homolog RBR1. RBR1 regulates not only cell cycle genes, but also, independent of the cell cycle transcription factor E2F, genes required for formative divisions and cell fate acquisition, thus directly linking cell proliferation with differentiation. This mechanism allows the implementation of spatial information, in the form of high kinase activity, with intracellular gating of developmental decisions.


PLOS ONE | 2012

Evolutionarily Conserved Histone Methylation Dynamics during Seed Life-Cycle Transitions

Kerstin Müller; Daniel Bouyer; Arp Schnittger; Allison R. Kermode

Plants have a remarkable ability to react to seasonal changes by synchronizing life-cycle transitions with environmental conditions. We addressed the question of how transcriptional re-programming occurs in response to an environmental cue that triggers the major life cycle transition from seed dormancy to germination and seedling growth. We elucidated an important mechanistic aspect of this process by following the chromatin dynamics of key regulatory genes with a focus on the two antagonistic marks, H3K4me3 and H3K27me3. Histone methylation patterns of major dormancy regulators changed during the transition to germination and seedling growth. We observed a switch from H3K4me3 and high transcription levels to silencing by the repressive H3K27me3 mark when dormancy was broken through exposure to moist chilling, underscoring that a functional PRC2 complex is necessary for this transition. Moreover, this reciprocal regulation by H3K4me3 and H3K27me3 is evolutionarily conserved from gymnosperms to angiosperms.

Collaboration


Dive into the Daniel Bouyer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

François Roudier

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Hirofumi Harashima

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maren Heese

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Xin’Ai Zhao

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge