Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Broek is active.

Publication


Featured researches published by Daniel Broek.


Cell | 1985

In yeast, RAS proteins are controlling elements of adenylate cyclase

T. Toda; Isao Uno; Tatsuo Ishikawa; Scott Powers; T. Kataoka; Daniel Broek; S. Cameron; James R. Broach; Kunihiro Matsumoto; Michael Wigler

S. cerevisiae strains containing RAS2val19, a RAS2 gene with a missense mutation analogous to one that activates the transforming potential of mammalian ras genes, have growth and biochemical properties strikingly similar to yeast strains carrying IAC or bcy1. Yeast strains carrying the IAC mutation have elevated levels of adenylate cyclase activity. bcy1 is a mutation that suppresses the lethality in adenylate cyclase deficient yeast. Yeast strains deficient in RAS function exhibit properties similar to adenylate cyclase deficient yeast. bcy1 suppresses lethality in ras1- ras2- yeast. Compared to wild-type yeast strains, intracellular cyclic AMP levels are significantly elevated in RAS2val19 strains, significantly depressed in ras2- strains, and virtually undetectable in ras1- ras2- bcy1 strains. Membranes from ras1- ras2- bcy1 yeast lack the GTP-stimulated adenylate cyclase activity present in membranes from wild-type cells, and membranes from RAS2val19 yeast strains have elevated levels of an apparently GTP-independent adenylate cyclase activity. Mixing membranes from ras1- ras2- yeast with membranes from adenylate cyclase deficient yeast reconstitutes a GTP-dependent adenylate cyclase.


Molecular and Cellular Biology | 1988

Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method.

J. Field; J. Nikawa; Daniel Broek; B. MacDonald; Linda Rodgers; Ian A. Wilson; Richard A. Lerner; Michael Wigler

We developed a method for immunoaffinity purification of Saccharomyces cerevisiae adenylyl cyclase based on creating a fusion with a small peptide epitope. Using oligonucleotide technology to encode the peptide epitope we constructed a plasmid that expressed the fusion protein from the S. cerevisiae alcohol dehydrogenase promoter ADH1. A monoclonal antibody previously raised against the peptide was used to purify adenylyl cyclase by affinity chromatography. The purified enzyme appeared to be a multisubunit complex consisting of the 200-kilodalton adenylyl cyclase fusion protein and an unidentified 70-kilodalton protein. The purified protein could be activated by RAS proteins. Activation had an absolute requirement for a guanine nucleoside triphosphate.


Molecular and Cellular Biology | 1997

Lck regulates Vav activation of members of the Rho family of GTPases.

Jaewon Han; B Das; W Wei; L Van Aelst; Raymond D. Mosteller; R Khosravi-Far; J K Westwick; C J Der; Daniel Broek

Vav is a member of a family of oncogene proteins that share an approximately 250-amino-acid motif called a Dbl homology domain. Paradoxically, Dbl itself and other proteins containing a Dbl domain catalyze GTP-GDP exchange for Rho family proteins, whereas Vav has been reported to catalyze GTP-GDP exchange for Ras proteins. We present Saccharomyces cerevisiae genetic data, in vitro biochemical data, and animal cell biological data indicating that Vav is a guanine nucleotide exchange factor for Rho-related proteins, but in similar genetic and biochemical experiments we fail to find evidence that Vav is a guanine nucleotide exchange factor for Ras. Further, we present data indicating that the Lck kinase activates the guanine nucleotide exchange factor and transforming activity of Vav.


Cell | 1987

The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway

Daniel Broek; T. Toda; T. Michaeli; Lonny Levin; C. Birchmeier; Mark Zoller; Scott Powers; Michael Wigler

The gene corresponding to the S. cerevisiae cell division cycle mutant cdc25 has been cloned and sequenced, revealing an open reading frame encoding a protein of 1589 amino acids that contains no significant homologies with other known proteins. Cells lacking CDC25 have low levels of cyclic AMP and decreased levels of Mg2+-dependent adenylate cyclase activity. The lethality resulting from disruption of the CDC25 gene can be suppressed by the presence of the activated RAS2val19 gene, but not by high copy plasmids expressing a normal RAS2 or RAS1 gene. These results suggest that normal RAS is dependent on CDC25 function. Furthermore, mutationally activated alleles of CDC25 are capable of inducing a set of phenotypes similar to those observed in strains containing a genetically activated RAS/adenylate cyclase pathway, suggesting that CDC25 encodes a regulatory protein. We propose that CDC25 regulates adenylate cyclase by regulating the guanine nucleotide bound to RAS proteins.


Cell | 1985

DNA sequence and characterization of the S. cerevisiae gene encoding adenylate cyclase

T. Kataoka; Daniel Broek; Michael Wigler

We have cloned CYR1, the S. cerevisiae gene encoding adenylate cyclase. The DNA sequence of CYR1 can encode a protein of 2026 amino acids. This protein would contain a central region comprised of over twenty copies of a 23 amino acid repeating unit with remarkable homology to a 24 amino acid tandem repeating unit of a trace human serum glycoprotein. Gene disruption and biochemical experiments indicate that the catalytic domain of adenylate cyclase resides in the carboxyl terminal 400 amino acids. Elevated expression of adenylate cyclase suppresses the lethality that otherwise results from loss of RAS gene function in yeast. Yeast adenylate cyclase, made in E. coli, cannot be activated by added RAS protein.


Molecular and Cellular Biology | 2002

Sphingosine Kinase Mediates Vascular Endothelial Growth Factor-Induced Activation of Ras and Mitogen-Activated Protein Kinases

Xiaodong Shu; Weicheng Wu; Raymond D. Mosteller; Daniel Broek

ABSTRACT Vascular endothelial growth factor (VEGF) signaling is critical to the processes of angiogenesis and tumor growth. Here, evidence is presented for VEGF stimulation of sphingosine kinase (SPK) that affects not only endothelial cell signaling but also tumor cells expressing VEGF receptors. VEGF or phorbol 12-myristate 13-acetate treatment of the T24 bladder tumor cell line resulted in a time- and dose-dependent stimulation of SPK activity. In T24 cells, VEGF treatment reduced cellular sphingosine levels while raising that of sphingosine-1-phosphate. VEGF stimulation of T24 cells caused a slow and sustained accumulation of Ras-GTP and phosphorylated extracellular signal-regulated kinase (phospho-ERK) compared with that after EGF treatment. Small interfering RNA (siRNA) that targets SPK1, but not SPK2, blocks VEGF-induced accumulation of Ras-GTP and phospho-ERK in T24 cells. In contrast to EGF stimulation, VEGF stimulation of ERK1/2 phosphorylation was unaffected by dominant-negative Ras-N17. Raf kinase inhibition blocked both VEGF- and EGF-stimulated accumulation of phospho-ERK1/2. Inhibition of SPK by pharmacological inhibitors, a dominant-negative SPK mutant, or siRNA that targets SPK blocked VEGF, but not EGF, induction of phospho-ERK1/2. We conclude that VEGF induces DNA synthesis in a pathway which sequentially involves protein kinase C (PKC), SPK, Ras, Raf, and ERK1/2. These data highlight a novel mechanism by which SPK mediates signaling from PKC to Ras in a manner independent of Ras-guanine nucleotide exchange factor.


Cell | 1985

Differential activation of yeast adenylate cyclase by wild type and mutant RAS proteins

Daniel Broek; Nasrollah Samiy; O. Fasano; Asao Fujiyama; Fuyuhiko Tamanoi; John Northup; Michael Wigler

In these experiments we demonstrate that purified RAS proteins, whether derived from the yeast RAS1 or RAS2 or the human H-ras genes, activate yeast adenylate cyclase in the presence of guanine nucleotides. These results confirm the prediction of earlier genetic and biochemical data and for the first time provide a complete biochemical assay for RAS protein function. Furthermore, we observe a biochemical difference between the RAS2 and RAS2val19 proteins in their ability to activate adenylate cyclase after preincubation with GTP.


Cell | 1985

RAS proteins can induce meiosis in xenopus oocytes

C. Birchmeier; Daniel Broek; Michael Wigler

Injection of human H-ras protein induces maturation of Xenopus oocytes; that is, progression from prophase to metaphase of meiosis. The oncogenic protein encoded by H-rasval12 is nearly a 100-fold more potent than the protein encoded by the wild-type gene. We do not observe any measurable increase or decrease in cyclic AMP concentration in injected oocytes, and the effects of H-ras protein are only partially blocked by cholera toxin. Our results suggest that not all, if any, of the effects of H-rasval12 protein in this system are mediated by adenylate cyclase.


Cell | 1986

RAM, a gene of yeast required for a functional modification of RAS proteins and for production of mating pheromone a-factor

Scott Powers; Susan Michaelis; Daniel Broek; Anna A. Sonia Santa; J. Field; Ira Herskowitz; Michael Wigler

We have identified a gene (SUPH) of S. cerevisiae that is required for both RAS function and mating by cells of a mating type. supH is allelic to ste16, a gene required for the production of the mating pheromone a-factor. Both RAS and a-factor coding sequences terminate with the potential acyltransferase recognition sequence Cys-A-A-X, where A is an aliphatic amino acid. Mutations in SUPH-STE16 prevent the membrane localization and maturation of RAS protein, as well as the fatty acid acylation of it and other membrane proteins. We propose the designation RAM (RAS protein and a-factor maturation function) for SUPH and STE16. RAM may encode an enzyme responsible for the modification and membrane localization of proteins with this C-terminal sequence.


Oncogene | 2003

VEGF receptor expression and signaling in human bladder tumors

Weicheng Wu; Xiaodong Shu; Harut Hovsepyan; Raymond D. Mosteller; Daniel Broek

Overexpression of vascular endothelial growth factor receptors (VEGFRs) has been reported in a variety of tumor types. Here we find that 11 out of the 14 bladder tumor cell lines examined express one or more VEGF receptors. Analysis of the T24 bladder tumor cell line reveals a functional autocrine loop involving VEGF and the Flk-1 receptor. Blocking VEGF expression in T24 cells results in a decrease in DNA synthesis. The Flk-1 receptor in T24 cells is phosphorylated in response to VEGF-121 or VEGF-165, and an Flk-1 inhibitor blocks VEGF to ERK signaling. We report that VEGF stimulation of T24 cells results in activation of H- and N-Ras and this is dependent on cellular sphingosine kinase 1 (SPK1) activity. Previously, we found VEGF-induced activation of Ras appears to be independent of a Ras-guanine nucleotide exchange factors (GEFs). Here we report that sphingosine can stimulate Ras-GTPase activating protein (GAP) activity in vitro, and sphingosine-1-phosphate (SPP) can block the stimulatory effects of sphingosine. We present a model where the balance between sphingosine and SPP regulates Ras-GAP activity such that stimulation of SPK1 favors downregulation of Ras-GAP and thereby the activation of Ras proteins. These data highlight a VEGF pathway that may be involved in the survival and proliferation of bladder tumor cells as well as other tumor cell types.

Collaboration


Dive into the Daniel Broek's collaboration.

Top Co-Authors

Avatar

Michael Wigler

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

Raymond D. Mosteller

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Field

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

T. Toda

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jaewon Han

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Balaka Das

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

T. Kataoka

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

Wen Wei

Cold Spring Harbor Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge