Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raymond D. Mosteller is active.

Publication


Featured researches published by Raymond D. Mosteller.


Molecular and Cellular Biology | 1997

Lck regulates Vav activation of members of the Rho family of GTPases.

Jaewon Han; B Das; W Wei; L Van Aelst; Raymond D. Mosteller; R Khosravi-Far; J K Westwick; C J Der; Daniel Broek

Vav is a member of a family of oncogene proteins that share an approximately 250-amino-acid motif called a Dbl homology domain. Paradoxically, Dbl itself and other proteins containing a Dbl domain catalyze GTP-GDP exchange for Rho family proteins, whereas Vav has been reported to catalyze GTP-GDP exchange for Ras proteins. We present Saccharomyces cerevisiae genetic data, in vitro biochemical data, and animal cell biological data indicating that Vav is a guanine nucleotide exchange factor for Rho-related proteins, but in similar genetic and biochemical experiments we fail to find evidence that Vav is a guanine nucleotide exchange factor for Ras. Further, we present data indicating that the Lck kinase activates the guanine nucleotide exchange factor and transforming activity of Vav.


Molecular and Cellular Biology | 2002

Sphingosine Kinase Mediates Vascular Endothelial Growth Factor-Induced Activation of Ras and Mitogen-Activated Protein Kinases

Xiaodong Shu; Weicheng Wu; Raymond D. Mosteller; Daniel Broek

ABSTRACT Vascular endothelial growth factor (VEGF) signaling is critical to the processes of angiogenesis and tumor growth. Here, evidence is presented for VEGF stimulation of sphingosine kinase (SPK) that affects not only endothelial cell signaling but also tumor cells expressing VEGF receptors. VEGF or phorbol 12-myristate 13-acetate treatment of the T24 bladder tumor cell line resulted in a time- and dose-dependent stimulation of SPK activity. In T24 cells, VEGF treatment reduced cellular sphingosine levels while raising that of sphingosine-1-phosphate. VEGF stimulation of T24 cells caused a slow and sustained accumulation of Ras-GTP and phosphorylated extracellular signal-regulated kinase (phospho-ERK) compared with that after EGF treatment. Small interfering RNA (siRNA) that targets SPK1, but not SPK2, blocks VEGF-induced accumulation of Ras-GTP and phospho-ERK in T24 cells. In contrast to EGF stimulation, VEGF stimulation of ERK1/2 phosphorylation was unaffected by dominant-negative Ras-N17. Raf kinase inhibition blocked both VEGF- and EGF-stimulated accumulation of phospho-ERK1/2. Inhibition of SPK by pharmacological inhibitors, a dominant-negative SPK mutant, or siRNA that targets SPK blocked VEGF, but not EGF, induction of phospho-ERK1/2. We conclude that VEGF induces DNA synthesis in a pathway which sequentially involves protein kinase C (PKC), SPK, Ras, Raf, and ERK1/2. These data highlight a novel mechanism by which SPK mediates signaling from PKC to Ras in a manner independent of Ras-guanine nucleotide exchange factor.


Oncogene | 2003

VEGF receptor expression and signaling in human bladder tumors

Weicheng Wu; Xiaodong Shu; Harut Hovsepyan; Raymond D. Mosteller; Daniel Broek

Overexpression of vascular endothelial growth factor receptors (VEGFRs) has been reported in a variety of tumor types. Here we find that 11 out of the 14 bladder tumor cell lines examined express one or more VEGF receptors. Analysis of the T24 bladder tumor cell line reveals a functional autocrine loop involving VEGF and the Flk-1 receptor. Blocking VEGF expression in T24 cells results in a decrease in DNA synthesis. The Flk-1 receptor in T24 cells is phosphorylated in response to VEGF-121 or VEGF-165, and an Flk-1 inhibitor blocks VEGF to ERK signaling. We report that VEGF stimulation of T24 cells results in activation of H- and N-Ras and this is dependent on cellular sphingosine kinase 1 (SPK1) activity. Previously, we found VEGF-induced activation of Ras appears to be independent of a Ras-guanine nucleotide exchange factors (GEFs). Here we report that sphingosine can stimulate Ras-GTPase activating protein (GAP) activity in vitro, and sphingosine-1-phosphate (SPP) can block the stimulatory effects of sphingosine. We present a model where the balance between sphingosine and SPP regulates Ras-GAP activity such that stimulation of SPK1 favors downregulation of Ras-GAP and thereby the activation of Ras proteins. These data highlight a VEGF pathway that may be involved in the survival and proliferation of bladder tumor cells as well as other tumor cell types.


Molecular and Cellular Biology | 1994

Identification of residues of the H-ras protein critical for functional interaction with guanine nucleotide exchange factors.

Raymond D. Mosteller; Jaewon Han; Daniel Broek

Ras proteins are activated in vivo by guanine nucleotide exchange factors encoded by genes homologous to the CDC25 gene of Saccharomyces cerevisiae. We have taken a combined genetic and biochemical approach to probe the sites on Ras proteins important for interaction with such exchange factors and to further probe the mechanism of CDC25-catalyzed GDP-GTP exchange. Random mutagenesis coupled with genetic selection in S. cerevisiae was used to generate second-site mutations within human H-ras-ala15 which could suppress the ability of the Ala-15 substitution to block CDC25 function. We transferred these second-site suppressor mutations to normal H-ras and oncogenic H-rasVal-12 to test whether they induced a general loss of function or whether they selectively affected CDC25 interaction. Four highly selective mutations were discovered, and they affected the surface-located amino acid residues 62, 63, 67, and 69. Two lines of evidence suggested that these residues may be involved in binding to CDC25: (i) using the yeast two-hybrid system, we demonstrated that these mutants cannot bind CDC25 under conditions where the wild-type H-Ras protein can; (ii) we demonstrated that the binding to H-Ras of monoclonal antibody Y13-259, whose epitope has been mapped to residues 63, 65, 66, 67, 70, and 73, is blocked by the mouse sos1 and yeast CDC25 gene products. We also present evidence that the mechanism by which CDC25 catalyzes exchange is more involved than simply catalyzing the release of bound nucleotide and passively allowing nucleotides to rebind. Most critically, a complex of Ras and CDC25 protein, unlike free Fas protein, possesses significantly greater affinity for GTP than for GDP. Furthermore, the Ras CDC25 complex is more readily dissociated into free subunits by GTP than it is by GDP. Both of these results suggest a function for CDC25 in promoting the selective exchange of GTP for GDP.


Molecular and Cellular Biology | 2004

Sphingosine Kinase Protects Lipopolysaccharide-Activated Macrophages from Apoptosis

Weicheng Wu; Raymond D. Mosteller; Daniel Broek

ABSTRACT Lipopolysaccharide (LPS) signaling is critical for the innate immune response to gram-negative bacteria. Here, evidence is presented for LPS stimulation of sphingosine kinase (SPK) in the RAW 264.7 murine macrophage cell line and rat primary hepatic macrophages (HMs). LPS treatment of RAW 264.7 cells resulted in a time- and dose-dependent activation of SPK and membrane translocation of SPK1. Further, LPS-induced SPK activation was blocked by SPK1-specific small interfering RNA (siRNA). Overexpression of Toll-like receptor 4 and MD2, the receptor and coreceptor of LPS, in HEK 293 cells activated SPK activity in the absence of LPS treatment. Inhibition of SPK by the pharmacological inhibitor N,N-dimethylsphingosine (DMS) or SPK1-specific siRNA blocked LPS stimulation of extracellular signal-regulated kinase 1/2 and p38 but enhanced LPS-induced c-Jun N-terminal kinase activation. The SPK inhibitor DMS and dominant-negative SPK1 also blocked LPS activation of Elk-1 and NF-κB reporters in RAW 264.7 cells. Inhibition of SPK sensitized RAW 264.7 cells and HMs to LPS-induced apoptosis. These data demonstrate the critical role of SPK1 in LPS signaling in macrophages and suggest that SPK1 is a potential therapeutic target to block hyperimmune responses induced by gram-negative bacteria.


Molecular and Cellular Biology | 1994

Amino acid residues in the CDC25 guanine nucleotide exchange factor critical for interaction with Ras.

Weonmee Park; Raymond D. Mosteller; Daniel Broek

Previously we found that negatively charged residues at positions 62, 63, and 69 of H-Ras are involved in binding to the CDC25 guanine nucleotide exchange factor (GEF). Using site-directed mutagenesis, we have changed conserved, positively charged residues of CDC25GEF to glutamic acid. We find the nonfunctional CDC25R1374E mutant and the nonfunctional H-RasE63K mutant cooperate in suppression of the loss of CDC25 function in Saccharomyces cerevisiae. Also, peptides corresponding to residues 1364 to 1383 of CDC25GEF inhibit interaction between GEFs and H-Ras. We propose that residues 1374 of CDC25GEF and 63 of H-Ras form an ion pair and that when this ion pair is reversed, functional interaction can still occur.


Molecular and Cellular Biology | 1998

Distinct Subclasses of Small GTPases Interact with Guanine Nucleotide Exchange Factors in a Similar Manner

Gwo-Jen Day; Raymond D. Mosteller; Daniel Broek

ABSTRACT The Ras-related GTPases are small, 20- to 25-kDa proteins which cycle between an inactive GDP-bound form and an active GTP-bound state. The Ras superfamily includes the Ras, Rho, Ran, Arf, and Rab/YPT1 families, each of which controls distinct cellular functions. The crystal structures of Ras, Rac, Arf, and Ran reveal a nearly superimposible structure surrounding the GTP-binding pocket, and it is generally presumed that the Rab/YPT1 family shares this core structure. The Ras, Rac, Ran, Arf, and Rab/YPT1 families are activated by interaction with family-specific guanine nucleotide exchange factors (GEFs). The structural determinants of GTPases required for interaction with family-specific GEFs have begun to emerge. We sought to determine the sites on YPT1 which interact with GEFs. We found that mutations of YPT1 at position 42, 43, or 49 (effector loop; switch I), position 69, 71, 73, or 75 (switch II), and position 107, 109, or 115 (alpha-helix 3–loop 7 [α3-L7]) are intragenic suppressors of dominant interfering YPT1 mutant N22 (YPT1-N22), suggesting these mutations prevent YPT1-N22 from binding to and sequestering an endogenous GEF. Mutations at these positions prevent interaction with the DSS4 GEF in vitro. Mutations in the switch II and α3-L7 regions do not prevent downstream signaling in yeast when combined with a GTPase-defective (activating) mutation. Together, these results show that the YPT1 GTPase interacts with GEFs in a manner reminiscent of that for Ras and Arf in that these GTPases use divergent sequences corresponding to the switch I and II regions and α3-L7 of Ras to interact with family-specific GEFs. This finding suggests that GTPases of the Ras superfamily each may share common features of GEF-mediated guanine nucleotide exchange even though the GEFs for each of the Ras subfamilies appear evolutionarily unrelated.


Oncogene | 1997

Identification of a dominant-negative mutation in the yeast CDC25 guanine nucleotide exchange factor for Ras

Weonmee Park; Raymond D. Mosteller; Daniel Broek

In previous studies we changed five conserved amino acid residues in the catalytic domain of the yeast Ras-specific guanine nucleotide exchange factor CDC25GEF (Park et al., 1994). One of the substitutions (R1489E) resulted in a molecule which could bind Ras but was catalytically inactive. These observations suggested that CDC25R1489E might be a dominant-negative mutant. Here we report further experiments which confirm the dominant-negative phenotype of CDC25R1489E. Two lines of evidence indicate that the CDC25R1489E mutant exhibits Ras-specific binding in vivo. First, expression of CDC25R1489E in a wild-type yeast strain caused a partial inhibition of growth which was reversed by overexpression of the wild-type yeast RAS2 protein. Second, expression of CDC25R1489E in a yeast strain containing a temperature-sensitive, dominant-negative RAS2 mutation (RAS2val19ala22) suppressed the temperature-sensitive phenotype. The latter findings suggest that the CDC25R1489E protein bound the mutant RAS2 protein thereby releasing the wild-type CDC25 protein for activation of the wild-type RAS1 protein. Further, using a protein-protein binding assay and guanine nucleotide exchange assay (release of [3H]-GDP) in vitro, we demonstrate that the CDC25R1489E protein can bind wild-type Ras protein but is unable to catalyze GDP-GTP exchange. Thus, the results of genetic and biochemical experiments demonstrate that CDC25R1489E encodes a dominant-negative GEF which blocks the Ras signaling pathway by binding wild-type Ras in a catalytically inactive complex.


Journal of Theoretical Biology | 1984

A mathematical model that applies to protein degradation and post-translational processing of proteins and to analogous processes for other molecules in non-growing and exponentially growing cells

Raymond D. Mosteller; B. E. Goldstein

A mathematical model is presented that describes first order degradation and post-translational processing of proteins in non-growing and exponentially growing cells. The model applies to proteins that are substrates or products of processing. General equations are presented that can be applied to many different experimental protocols. Application of the model to pulse-chase and continuous labeling experiments is illustrated. The mathematical expressions apply to any cellular component that is synthesized in proportion to cellular mass and is degraded or processed by reactions that follow first order kinetics. However, in this paper, the model is discussed solely as it applies to protein metabolism.


Biochemical and Biophysical Research Communications | 1976

Isolation of relaxed-control mutants of Escherichia coli K-12 which are sensitive to glucose starvation

Raymond D. Mosteller; Shing F. Kwan

Abstract Mutants of Escherichia coli K-12 which are sensitive to glucose starvation were isolated by an enrichment procedure using thymine starvation to select for nongrowing cells. Eleven independent isolates were obtained by this method. The mutants are also sensitive to glycerol starvation and to a lesser extent to nitrogen or amino acid starvation. The mutants are more sensitive than the parental strain to inhibitors of protein synthesis but not inhibitors of RNA or DNA synthesis. [ 3 H]-leucine incorporation experiments indicate that protein synthesis is blocked in the mutants during recovery from glucose starvation or chloramphenicol inhibition. Incorporation of [ 3 H]uridine in amino acid-starved cells demonstrates that the mutants are partially relaxed for control of RNA synthesis. Physiological and genetic experiments indicate that these mutants are different from previously isolated relaxed-control mutants.

Collaboration


Dive into the Raymond D. Mosteller's collaboration.

Top Co-Authors

Avatar

Daniel Broek

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Jaewon Han

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Weonmee Park

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Xiaodong Shu

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Balaka Das

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

B Das

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

B. E. Goldstein

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Barbara B. Mandula

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Boyd Hardesty

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

C J Der

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge