Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel E. Wolfe is active.

Publication


Featured researches published by Daniel E. Wolfe.


Journal of Atmospheric and Oceanic Technology | 2000

Developing an Operational, Surface-Based, GPS, Water Vapor Observing System for NOAA: Network Design and Results

Daniel E. Wolfe; Seth I. Gutman

Abstract The need for a reliable, low-cost observing system to measure water vapor in the atmosphere is incontrovertible. Experiments have shown the potential for using Global Positioning System (GPS) receivers to measure total precipitable water vapor accurately at different locations and times of year and under all weather conditions. The National Oceanic and Atmospheric Administrations’s (NOAA) Forecast Systems Laboratory (FSL) and Environmental Technology Laboratory (ETL), in collaboration with the University NAVSTAR Consortium, University of Hawaii, Scripps Institution of Oceanography, and NOAA’s National Geodetic Survey (NGS) Laboratory, are addressing this need by developing a ground-based water vapor observing system based on the measurement of GPS signal delays caused by water vapor in the atmosphere. The NOAA GPS Integrated Precipitable Water Vapor (NOAA GPS–IPW) network currently has 35 continuously operating stations and is expected to expand into a 200-station demonstration network by 2004. T...


Bulletin of the American Meteorological Society | 1998

The IMADA-AVER Boundary Layer Experiment in the Mexico City Area

J. C. Doran; Scott Abbott; John A. Archuleta; Xindi Bian; Judith C. Chow; Richard L. Coulter; S. F. J. de Wekker; S. Edgerton; S. Elliott; A. Fernandez; Jerome D. Fast; John M. Hubbe; C. W. King; D. Langley; J. Leach; J. T. Lee; Timothy Martin; D. Martinez; J. L. Martinez; G. Mercado; V. Mora; M. Mulhearn; J. L. Pena; R. Petty; W. Porch; C. C. Russell; R. Salas; J.D. Shannon; William J. Shaw; G. Sosa

Abstract A boundary layer field experiment in the Mexico City basin during the period 24 February–22 March 1997 is described. A total of six sites were instrumented. At four of the sites, 915-MHz radar wind profilers were deployed and radiosondes were released five times per day. Two of these sites also had sodars collocated with the profilers. Radiosondes were released twice per day at a fifth site to the south of the basin, and rawinsondes were flown from another location to the northeast of the city three times per day. Mixed layers grew to depths of 2500–3500 m, with a rapid period of growth beginning shortly before noon and lasting for several hours. Significant differences between the mixed-layer temperatures in the basin and outside the basin were observed. Three thermally and topographically driven flow patterns were observed that are consistent with previously hypothesized topographical and thermal forcing mechanisms. Despite these features, the circulation patterns in the basin important for the...


Journal of Climate | 2010

Surface Flux Observations on the Southeastern Tropical Pacific Ocean and Attribution of SST Errors in Coupled Ocean–Atmosphere Models

Simon P. de Szoeke; Christopher W. Fairall; Daniel E. Wolfe; Ludovic Bariteau; Paquita Zuidema

Abstract A new dataset synthesizes in situ and remote sensing observations from research ships deployed to the southeastern tropical Pacific stratocumulus region for 7 years in boreal fall. Surface meteorology, turbulent and radiative fluxes, aerosols, cloud properties, and rawinsonde profiles were measured on nine ship transects along 20°S from 75° to 85°W. Fluxes at the ocean surface are essential to the equilibrium SST. Solar radiation is the only warming net heat flux, with 180–200 W m−2 in boreal fall. The strongest cooling is evaporation (60–100 W m−2), followed by net thermal infrared radiation (30 W m−2) and sensible heat flux (<10 W m−2). The 70 W m−2 imbalance of heating at the surface reflects the seasonal SST tendency and some 30 W m−2 cooling that is mostly due to ocean transport. Coupled models simulate significant SST errors in the eastern tropical Pacific Ocean. Three different observation-based gridded ocean surface flux products agree with ship and buoy observations, while fluxes simulat...


Journal of Geophysical Research | 2006

Turbulent bulk transfer coefficients and ozone deposition velocity in the International Consortium for Atmospheric Research into Transport and Transformation

Christopher W. Fairall; Ludovic Bariteau; Andrey A. Grachev; R. J. Hill; Daniel E. Wolfe; W. A. Brewer; S. C. Tucker; J. E. Hare; Wayne M. Angevine

[1] In this paper, we examine observations of shallow, stable boundary layers in the cool waters of the Gulf of Maine between Cape Cod, Massachusetts, and Nova Scotia, obtained in the 2004 New England Air Quality Study (NEAQS-04), which was part of the International Consortium for Atmospheric Research into Transport and Transformation (ICARTT). The observations described herein were made from the NOAA Research Vessel Ronald H. Brown. The ship was instrumented for measurements of meteorological, gas-phase and aerosol atmospheric chemistry variables. Meteorological instrumentation included a Doppler lidar, a radar wind profiler, rawinsonde equipment, and a surface flux package. In this study, we focus on direct comparisons of the NEAQS-04 flux observations with the COARE bulk flux algorithm to investigate possible coastal influences on air-sea interactions. We found significant suppression of the transfer coefficients for momentum, sensible heat, and latent heat; the suppression was correlated with lighter winds, more stable surface layers, S-SE wind direction, and lower boundary layer heights. Analysis of the details shows the suppression is not a measurement, stability correction, or surface wave effect. The correlation with boundary layer height is consistent with an interpretation that our measurements at 18-m height do not realize the full surface flux in shallow boundary layers. We also find that a bulk Richardson number threshold of 0.1 gives a better estimate of boundary layer height than 0.25 or 0.5. Mean ozone deposition velocity is estimated as 0.44 mm s−1, corresponding to a boundary removal timescale of about 1 day.


Bulletin of the American Meteorological Society | 2011

Multiyear Observations of the Tropical Atlantic Atmosphere: Multidisciplinary Applications of the NOAA Aerosols and Ocean Science Expeditions

Nicholas R. Nalli; Everette Joseph; Vernon R. Morris; Christopher D. Barnet; Walter Wolf; Daniel E. Wolfe; Peter J. Minnett; Malgorzata Szczodrak; Miguel Izaguirre; Rick Lumpkin; Hua Xie; Alexander Smirnov; Tom King; Jennifer Wei

This paper gives an overview of a unique set of ship-based atmospheric data acquired over the tropical Atlantic Ocean during boreal spring and summer as part of ongoing National Oceanic and Atmospheric Administration (NOAA) Aerosols and Ocean Science Expedition (AEROSE) field campaigns. Following the original 2004 campaign onboard the Ronald H. Brown, AEROSE has operated on a yearly basis since 2006 in collaboration with the NOAA Prediction and Research Moored Array in the Tropical Atlantic (PIRATA) Northeast Extension (PNE). In this work, attention is given to atmospheric soundings of ozone, temperature, water vapor, pressure, and wind obtained from ozonesondes and radiosondes launched to coincide with low earth orbit environmental satellite overpasses [MetOp and the National Aeronautics and Space Administration (NASA) A-Train]. Data from the PNE/ AEROSE campaigns are unique in their range of marine meteorological phenomena germane to the satellite missions in question, including dust and smoke outflows ...


Journal of Geophysical Research | 2016

Influence of Oil and Gas Emissions on Summertime Ozone in the Colorado Northern Front Range

Erin E. McDuffie; P. M. Edwards; J. B. Gilman; William P. Dubé; M. Trainer; Daniel E. Wolfe; Wayne M. Angevine; J. A. Degouw; Eric J. Williams; Alex G. Tevlin; Jennifer G. Murphy; Emily V. Fischer; S. A. McKeen; Thomas B. Ryerson; J. Peischl; John S. Holloway; K. C. Aikin; A. O. Langford; Christoph J. Senff; Raul J. Alvarez; Samuel R. Hall; Kirk Ullmann; Kathy O. Lantz; Steven S. Brown

Tropospheric O3 has been decreasing across much of the eastern U.S. but has remained steady or even increased in some western regions. Recent increases in VOC and NOx emissions associated with the production of oil and natural gas (O&NG) may contribute to this trend in some areas. The Northern Front Range of Colorado has regularly exceeded O3 air quality standards during summertime in recent years. This region has VOC emissions from a rapidly developing O&NG basin and low concentrations of biogenic VOC in close proximity to urban-Denver NOx emissions. Here VOC OH reactivity (OHR), O3 production efficiency (OPE), and an observationally constrained box model are used to quantify the influence of O&NG emissions on regional summertime O3 production. Analyses are based on measurements acquired over two summers at a central location within the Northern Front Range that lies between major regional O&NG and urban emission sectors. Observational analyses suggest that mixing obscures any OPE differences in air primarily influenced by O&NG or urban emission sector. The box model confirms relatively modest OPE differences that are within the uncertainties of the field observations. Box model results also indicate that maximum O3 at the measurement location is sensitive to changes in NOx mixing ratio but also responsive to O&NG VOC reductions. Combined, these analyses show that O&NG alkanes contribute over 80% to the observed carbon mixing ratio, roughly 50% to the regional VOC OHR, and approximately 20% to regional photochemical O3 production.


Radio Science | 1999

Profiles of radio refractive index and humidity derived from radar wind profilers and the Global Positioning System

Earl E. Gossard; Seth I. Gutman; B. Boba Stankov; Daniel E. Wolfe

It has often been pointed out that the Bragg backscatter of radar waves from elevated turbulent layers is very highly correlated with the height gradient of radio refractive index (RI) through these layers. However, many users need the profiles of RI, or the associated humidity, rather than profiles of their gradients. Simple integration of the gradients is usually not feasible because of ground or sea clutter and because biological scatterers such as insects and birds often severely contaminate the lower range gates. We show that if the total height-integrated RI is independently available (say, from the Global Positioning System (GPS)), and if the surface value of RI is known, the profiles of RI are retrievable with good accuracy. For those profiler systems equipped with a radio acoustic sounding system to measure temperature, the humidity is also retrievable. The method is demonstrated with data collected in southern California, where 7 hours of profiler data were recorded at 449 MHZ along with GPS data. Three radiosonde balloons were launched during the period, and the profiles of RI from the balloon and the profiler are compared. The advantages of the system are its invulnerability to nonprecipitating clouds (at frequencies of 449 MHZ or lower) and that it uses only facilities that will soon be deployed globally. Simulations are used to assess errors from various factors such as loss of sign of the gradient of the potential RI (important especially during some frontal events) and the presence of biological contaminants in some geographical areas (such as coastal zones and some agricultural areas at night).


Journal of Atmospheric and Oceanic Technology | 2002

An Electronically Stabilized Phased Array System for Shipborne Atmospheric Wind Profiling

D. C. Law; S. A. McLaughlin; M. J. Post; B. L. Weber; D. C. Welsh; Daniel E. Wolfe; David A. Merritt

Abstract The design, construction, and first results are presented of a 915-MHz Doppler wind profiler that may be mounted on a moving platform such as a mobile land vehicle, ocean buoy, or a ship. The long dwell times in multiple beam directions, required for the detection of weak atmospheric radar echoes, are obtained by a passive phased array antenna, controlled by a motion control and monitoring (MCM) computer that acquires platform motion measurements and compensates in real time for the platform rotations. The platform translational velocities are accounted for in the signal processing system (SPS) before the calculation of the wind velocity profiles. The phased array antenna, MCM, and SPS are described, and radar-derived wind profiles are compared with those from rawinsonde balloons released during the first test cruise of the system, as the NOAA R/V Ronald H. Brown performed ship maneuvers.


Bulletin of the American Meteorological Society | 2017

Assessing State-of-the-Art Capabilities for Probing the Atmospheric Boundary Layer: The XPIA Field Campaign

Julie K. Lundquist; James M. Wilczak; Ryan Ashton; Laura Bianco; W. Alan Brewer; Aditya Choukulkar; Andrew Clifton; Mithu Debnath; Ruben Delgado; Katja Friedrich; Scott Gunter; Armita Hamidi; Giacomo Valerio Iungo; Aleya Kaushik; Branko Kosovic; Patrick Langan; Adam Lass; Evan Lavin; Joseph C. Y. Lee; Katherine McCaffrey; Rob K. Newsom; David Noone; Steven P. Oncley; Paul T. Quelet; Scott P. Sandberg; John L. Schroeder; William J. Shaw; Lynn C. Sparling; Clara St. Martin; Alexandra St. Pé

AbstractTo assess current capabilities for measuring flow within the atmospheric boundary layer, including within wind farms, the U.S. Department of Energy sponsored the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign at the Boulder Atmospheric Observatory (BAO) in spring 2015. Herein, we summarize the XPIA field experiment, highlight novel measurement approaches, and quantify uncertainties associated with these measurement methods. Line-of-sight velocities measured by scanning lidars and radars exhibit close agreement with tower measurements, despite differences in measurement volumes. Virtual towers of wind measurements, from multiple lidars or radars, also agree well with tower and profiling lidar measurements. Estimates of winds over volumes from scanning lidars and radars are in close agreement, enabling the assessment of spatial variability. Strengths of the radar systems used here include high scan rates, large domain coverage, and availability during most precipita...


Journal of Climate | 2007

On Air–Sea Interaction at the Mouth of the Gulf of California

Paquita Zuidema; Christopher W. Fairall; Leslie M. Hartten; J. E. Hare; Daniel E. Wolfe

Surface flux, wind profiler, oceanic temperature and salinity, and atmospheric moisture, cloud, and wind observations gathered from the R/V Altair during the North American Monsoon Experiment (NAME) are presented. The vessel was positioned at the mouth of the Gulf of California halfway between La Paz and Mazatlan (23.5°N, 108°W), from 7 July to 11 August 2004, with a break from 22 to 27 July. Experimentmean findings include a net heat input from the atmosphere into the ocean of 70 Wm 2 . The dominant cooling was an experiment-mean latent heat flux of 108 W m 2 , equivalent to an evaporation rate of 0.16 mm h 1 . Total accumulated rainfall amounted to 42 mm. The oceanic mixed layer had a depth of approximately 20 m and both warmed and freshened during the experiment, despite a dominance of evaporation over local precipitation. The mean atmospheric boundary layer depth was approximately 410 m, deepening with time from an initial value of 350 m. The mean near-surface relative humidity was 66%, increasing to 73% at the top of the boundary layer. The rawinsondes documented an additional moist layer between 2and 3-km altitude associated with a land–sea breeze, and a broad moist layer at 5–6 km associated with land-based convective outflow. The observational period included a strong gulf surge around 13 July associated with the onset of the summer monsoon in southern Arizona. During this surge, mean 1000–700hPa winds reached 12 m s 1 , net surface fluxes approached zero, and the atmosphere moistened significantly but little rainfall occurred. The experiment-mean wind diurnal cycle was dominated by mainland Mexico and consisted of a near-surface westerly sea breeze along with two easterly return flows, one at 2–3 km and another at 5–6 km. Each of these altitudes experienced nighttime cloudiness. The corresponding modulation of the radiative cloud forcing diurnal cycle provided a slight positive feedback upon the sea surface temperature. Two findings were notable. One was an advective warming of over 1°C in the oceanic mixed layer temperature associated with the 13 July surge. The second was the high nighttime cloud cover fraction at 5–6 km, dissipating during the day. These clouds appeared to be thin, stratiform, slightly supercooled liquid-phase clouds. The preference for the liquid phase increases the likelihood that the clouds can be advected farther from their source and thereby contribute to a higher-altitude horizontal moisture flux into the United States.

Collaboration


Dive into the Daniel E. Wolfe's collaboration.

Top Co-Authors

Avatar

Christopher W. Fairall

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

James M. Wilczak

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Julie K. Lundquist

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Steven S. Brown

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

W. Alan Brewer

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

William P. Dubé

Cooperative Institute for Research in Environmental Sciences

View shared research outputs
Top Co-Authors

Avatar

Aditya Choukulkar

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven P. Oncley

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Mithu Debnath

University of Texas at Dallas

View shared research outputs
Researchain Logo
Decentralizing Knowledge