Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where W. Alan Brewer is active.

Publication


Featured researches published by W. Alan Brewer.


Journal of the Atmospheric Sciences | 2006

Turbulent Velocity-Variance Profiles in the Stable Boundary Layer Generated by a Nocturnal Low-Level Jet

Robert M. Banta; Yelena L. Pichugina; W. Alan Brewer

Abstract Profiles of mean winds and turbulence were measured by the High Resolution Doppler lidar in the strong-wind stable boundary layer (SBL) with continuous turbulence. The turbulence quantity measured was the variance of the streamwise wind velocity component σ2u. This variance is a component of the turbulence kinetic energy (TKE), and it is shown to be numerically approximately equal to TKE for stable conditions—profiles of σ2u are therefore equivalent to profiles of TKE. Mean-wind profiles showed low-level jet (LLJ) structure for most of the profiles, which represented 10-min averages of mean and fluctuating quantities throughout each of the six nights studied. Heights were normalized by the height of the first LLJ maximum above the surface ZX, and the velocity scale used was the speed of the jet UX, which is shown to be superior to the friction velocity u* as a velocity scale. The major results were 1) the ratio of the maximum value of the streamwise standard deviation to the LLJ speed σu/UX was f...


Journal of Atmospheric and Oceanic Technology | 2009

Doppler Lidar Estimation of Mixing Height Using Turbulence, Shear, and Aerosol Profiles

Sara Cushman Tucker; Christoph J. Senff; A. M. Weickmann; W. Alan Brewer; Robert M. Banta; Scott P. Sandberg; Daniel C. Law; R. Michael Hardesty

Abstract The concept of boundary layer mixing height for meteorology and air quality applications using lidar data is reviewed, and new algorithms for estimation of mixing heights from various types of lower-tropospheric coherent Doppler lidar measurements are presented. Velocity variance profiles derived from Doppler lidar data demonstrate direct application to mixing height estimation, while other types of lidar profiles demonstrate relationships to the variance profiles and thus may also be used in the mixing height estimate. The algorithms are applied to ship-based, high-resolution Doppler lidar (HRDL) velocity and backscattered-signal measurements acquired on the R/V Ronald H. Brown during Texas Air Quality Study (TexAQS) 2006 to demonstrate the method and to produce mixing height estimates for that experiment. These combinations of Doppler lidar–derived velocity measurements have not previously been applied to analysis of boundary layer mixing height—over the water or elsewhere. A comparison of the ...


Journal of the Atmospheric Sciences | 2012

On Trade Wind Cumulus Cold Pools

Paquita Zuidema; Zhujun Li; Reginald J. Hill; Ludovic Bariteau; Bob Rilling; Christopher W. Fairall; W. Alan Brewer; Bruce A. Albrecht; Jeff Hare

AbstractShallow precipitating cumuli within the easterly trades were investigated using shipboard measurements, scanning radar data, and visible satellite imagery from 2 weeks in January 2005 of the Rain in Cumulus over the Ocean (RICO) experiment. Shipboard rainfall rates of up to 2 mm h−1 were recorded almost daily, if only for 10–30 min typically, almost always from clouds within mesoscale arcs. The precipitating cumuli, capable of reaching above 4 km, cooled surface air by 1–2 K, in all cases lowered surface specific humidities by up to 1.5 g kg−1, reduced surface equivalent potential temperatures by up to 6 K, and were often associated with short-lived increases in wind speed. Upper-level downdrafts were inferred to explain double-lobed moisture and temperature sounding profiles, as well as multiple inversions in wind profiler data. In two cases investigated further, the precipitating convection propagated faster westward than the mean surface wind by about 2–3 m s−1, consistent with a density curren...


Journal of Applied Meteorology and Climatology | 2012

Doppler Lidar–Based Wind-Profile Measurement System for Offshore Wind-Energy and Other Marine Boundary Layer Applications

Yelena L. Pichugina; Robert M. Banta; W. Alan Brewer; Scott P. Sandberg; R. Michael Hardesty

AbstractAccurate measurement of wind speed profiles aloft in the marine boundary layer is a difficult challenge. The development of offshore wind energy requires accurate information on wind speeds above the surface at least at the levels occupied by turbine blades. Few measured data are available at these heights, and the temporal and spatial behavior of near-surface winds is often unrepresentative of that at the required heights. As a consequence, numerical model data, another potential source of information, are essentially unverified at these levels of the atmosphere. In this paper, a motion-compensated, high-resolution Doppler lidar–based wind measurement system that is capable of providing needed information on offshore winds at several heights is described. The system has been evaluated and verified in several ways. A sampling of data from the 2004 New England Air Quality Study shows the kind of analyses and information available. Examples include time–height cross sections, time series, profiles, ...


Journal of Atmospheric and Oceanic Technology | 2008

Horizontal Velocity and Variance Measurements in the Stable Boundary Layer Using Doppler Lidar: Sensitivity to Averaging Procedures

Yelena L. Pichugina; Sara Cushman Tucker; Robert M. Banta; W. Alan Brewer; Neil Kelley; Bonnie Jonkman; Rob K. Newsom

Abstract Quantitative data on turbulence variables aloft—above the region of the atmosphere conveniently measured from towers—have been an important but difficult measurement need for advancing understanding and modeling of the stable boundary layer (SBL). Vertical profiles of streamwise velocity variances obtained from NOAA’s high-resolution Doppler lidar (HRDL), which have been shown to be approximately equal to turbulence kinetic energy (TKE) for stable conditions, are a measure of the turbulence in the SBL. In the present study, the mean horizontal wind component U and variance σ2u were computed from HRDL measurements of the line-of-sight (LOS) velocity using a method described by Banta et al., which uses an elevation (vertical slice) scanning technique. The method was tested on datasets obtained during the Lamar Low-Level Jet Project (LLLJP) carried out in early September 2003, near the town of Lamar in southeastern Colorado. This paper compares U with mean wind speed obtained from sodar and sonic an...


Journal of the Atmospheric Sciences | 2013

Ship-Based Observations of the Diurnal Cycle of Southeast Pacific Marine Stratocumulus Clouds and Precipitation

Casey D. Burleyson; Simon P. de Szoeke; Sandra E. Yuter; Matt Wilbanks; W. Alan Brewer

The diurnal cycle of marine stratocumulus in cloud-topped boundary layers is examined using shipbased meteorological data obtained duringthe2008Variability of American Monsoon Systems (VAMOS) Ocean‐Cloud‐Atmosphere‐Land Study Regional Experiment (VOCALS-REx). The high temporal and spatial continuity of the ship data, as well as the 31-day sample size, allows the diurnal transition in degree of coupling of the stratocumulus-topped boundary layer to be resolved. The amplitude of diurnal variation was comparable to the magnitude of longitudinal differences between regions east and west of 808 Wf or most of the cloud, surface, and precipitation variables examined. The diurnal cycle of precipitation is examined in terms of areal coverage, number of drizzle cells, and estimated rain rate. East of 808W, the drizzle cell frequency and drizzle area peaks just prior to sunrise. West of 808W, total drizzle area peaks at 0300 local solar time (LST), 2‐3h before sunrise. Peak drizzle cell frequency is 3 times higher west of 808W comparedtoeastof 808W.Thewaningof drizzleseveralhourspriortotheramp upof shortwavefluxesmay be related to the higher peak drizzle frequencies in the west. The ensemble effect of localized subcloud evaporation of precipitation may make drizzle a self-limiting process where the areal density of drizzle cells is sufficiently high. The daytime reduction in vertical velocity variance in a less coupled boundary layer is accompanied by enhanced stratification of potential temperature and a buildup of moisture near the surface.


Journal of Atmospheric and Oceanic Technology | 2015

3D Volumetric Analysis of Wind Turbine Wake Properties in the Atmosphere Using High-Resolution Doppler Lidar

Robert M. Banta; Yelena L. Pichugina; W. Alan Brewer; Julie K. Lundquist; Neil Kelley; Scott P. Sandberg; Raul J. Alvarez; R. Michael Hardesty; A. M. Weickmann

AbstractWind turbine wakes in the atmosphere are three-dimensional (3D) and time dependent. An important question is how best to measure atmospheric wake properties, both for characterizing these properties observationally and for verification of numerical, conceptual, and physical (e.g., wind tunnel) models of wakes. Here a scanning, pulsed, coherent Doppler lidar is used to sample a turbine wake using 3D volume scan patterns that envelop the wake and simultaneously measure the inflow profile. The volume data are analyzed for quantities of interest, such as peak velocity deficit, downwind variability of the deficit, and downwind extent of the wake, in a manner that preserves the measured data. For the case study presented here, in which the wake was well defined in the lidar data, peak deficits of up to 80% were measured 0.6–2 rotor diameters (D) downwind of the turbine, and the wakes extended more than 11D downwind. Temporal wake variability over periods of minutes and the effects of atmospheric gusts a...


Bulletin of the American Meteorological Society | 2017

Assessing State-of-the-Art Capabilities for Probing the Atmospheric Boundary Layer: The XPIA Field Campaign

Julie K. Lundquist; James M. Wilczak; Ryan Ashton; Laura Bianco; W. Alan Brewer; Aditya Choukulkar; Andrew Clifton; Mithu Debnath; Ruben Delgado; Katja Friedrich; Scott Gunter; Armita Hamidi; Giacomo Valerio Iungo; Aleya Kaushik; Branko Kosovic; Patrick Langan; Adam Lass; Evan Lavin; Joseph C. Y. Lee; Katherine McCaffrey; Rob K. Newsom; David Noone; Steven P. Oncley; Paul T. Quelet; Scott P. Sandberg; John L. Schroeder; William J. Shaw; Lynn C. Sparling; Clara St. Martin; Alexandra St. Pé

AbstractTo assess current capabilities for measuring flow within the atmospheric boundary layer, including within wind farms, the U.S. Department of Energy sponsored the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign at the Boulder Atmospheric Observatory (BAO) in spring 2015. Herein, we summarize the XPIA field experiment, highlight novel measurement approaches, and quantify uncertainties associated with these measurement methods. Line-of-sight velocities measured by scanning lidars and radars exhibit close agreement with tower measurements, despite differences in measurement volumes. Virtual towers of wind measurements, from multiple lidars or radars, also agree well with tower and profiling lidar measurements. Estimates of winds over volumes from scanning lidars and radars are in close agreement, enabling the assessment of spatial variability. Strengths of the radar systems used here include high scan rates, large domain coverage, and availability during most precipita...


Journal of the Atmospheric Sciences | 2013

Evaluation of Modeled Stratocumulus-Capped Boundary Layer Turbulence with Shipborne Data

Takanobu Yamaguchi; W. Alan Brewer; Graham Feingold

AbstractNumerically modeled turbulence simulated by the Advanced Research Weather Research and Forecasting Model (ARW) is evaluated with turbulence measurements from NOAA’s high-resolution Doppler lidar on the NOAA Research Vessel Ronald H. Brown during the Variability of the American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study—Regional Experiment (VOCALS-Rex) field program. A nonprecipitating nocturnal marine stratocumulus case is examined, and a nudging technique is applied to allow turbulence to spin up and come into a statistically stationary state with the initial observed cloud field. This “stationary” state is then used as the initial condition for the subsequent free-running simulation. The comparison shows that the modeled turbulence is consistently weaker than that observed. For the same resolution, the turbulence becomes stronger, especially for the horizontal component, as the length of the horizontal domain increases from 6.4 to 25.6 km. Analysis of the power spectral density sh...


Monthly Weather Review | 2008

Mesoscale moisture transport by the low-level jet during the IHOP field experiment

Edward I. Tollerud; Fernando Caracena; Steven E. Koch; Brian D. Jamison; R. Michael Hardesty; Brandi J. McCarty; Christoph Kiemle; Randall S. Collander; Diana L. Bartels; Steven C. Albers; Brent Shaw; Daniel L. Birkenheuer; W. Alan Brewer

Abstract Previous studies of the low-level jet (LLJ) over the central Great Plains of the United States have been unable to determine the role that mesoscale and smaller circulations play in the transport of moisture. To address this issue, two aircraft missions during the International H2O Project (IHOP_2002) were designed to observe closely a well-developed LLJ over the Great Plains (primarily Oklahoma and Kansas) with multiple observation platforms. In addition to standard operational platforms (most important, radiosondes and profilers) to provide the large-scale setting, dropsondes released from the aircraft at 55-km intervals and a pair of onboard lidar instruments—High Resolution Doppler Lidar (HRDL) for wind and differential absorption lidar (DIAL) for moisture—observed the moisture transport in the LLJ at greater resolution. Using these observations, the authors describe the multiscalar structure of the LLJ and then focus attention on the bulk properties and effects of scales of motion by computi...

Collaboration


Dive into the W. Alan Brewer's collaboration.

Top Co-Authors

Avatar

R. Michael Hardesty

Cooperative Institute for Research in Environmental Sciences

View shared research outputs
Top Co-Authors

Avatar

Robert M. Banta

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Yelena L. Pichugina

Cooperative Institute for Research in Environmental Sciences

View shared research outputs
Top Co-Authors

Avatar

James M. Wilczak

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Julie K. Lundquist

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Aditya Choukulkar

Cooperative Institute for Research in Environmental Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel E. Wolfe

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Scott P. Sandberg

Earth System Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mithu Debnath

University of Texas at Dallas

View shared research outputs
Researchain Logo
Decentralizing Knowledge