Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel H. Madsen is active.

Publication


Featured researches published by Daniel H. Madsen.


Journal of Cell Biology | 2013

M2-like macrophages are responsible for collagen degradation through a mannose receptor–mediated pathway

Daniel H. Madsen; Daniel Leonard; Andrius Masedunskas; Amanda Moyer; Henrik Jessen Jürgensen; Diane E. Peters; Panomwat Amornphimoltham; Arul Selvaraj; Susan S. Yamada; David A. Brenner; Sven Burgdorf; Lars H. Engelholm; Niels Behrendt; Kenn Holmbeck; Roberto Weigert; Thomas H. Bugge

Mannose receptor–mediated uptake of collagen by M2-like macrophages is a major mechanism of collagen turnover in mice.


Journal of Biological Chemistry | 2007

Extracellular Collagenases and the Endocytic Receptor, Urokinase Plasminogen Activator Receptor-associated Protein/Endo180, Cooperate in Fibroblast-mediated Collagen Degradation

Daniel H. Madsen; Lars H. Engelholm; Signe Ingvarsen; Thore Hillig; Rebecca A. Wagenaar-Miller; Lars Kjøller; Henrik Gårdsvoll; Gunilla Høyer-Hansen; Kenn Holmbeck; Thomas H. Bugge; Niels Behrendt

The collagens of the extracellular matrix are the most abundant structural proteins in the mammalian body. In tissue remodeling and in the invasive growth of malignant tumors, collagens constitute an important barrier, and consequently, the turnover of collagen is a rate-limiting process in these events. A recently discovered turnover route with importance for tumor growth involves intracellular collagen degradation and is governed by the collagen receptor, urokinase plasminogen activator receptor-associated protein (uPARAP or Endo180). The interplay between this mechanism and extracellular collagenolysis is not known. In this report, we demonstrate the existence of a new, composite collagen breakdown pathway. Thus, fibroblast-mediated collagen degradation proceeds preferentially as a sequential mechanism in which extracellular collagenolysis is followed by uPARAP/Endo180-mediated endocytosis of large collagen fragments. First, we show that collagen that has been pre-cleaved by a mammalian collagenase is taken up much more efficiently than intact, native collagen by uPARAP/Endo180-positive cells. Second, we demonstrate that this preference is governed by the acquisition of a gelatin-like structure by the collagen, occurring upon collagenase-mediated cleavage under native conditions. Third, we demonstrate that the growth of uPARAP/Endo180-deficient fibroblasts on a native collagen matrix leads to substantial extracellular accumulation of well defined collagen fragments, whereas, wild-type fibroblasts possess the ability to direct an organized and complete degradation sequence comprising both the initial cleavage, the endocytic uptake, and the intracellular breakdown of collagen.


Journal of Biological Chemistry | 2011

The non-phagocytic route of collagen uptake: a distinct degradation pathway.

Daniel H. Madsen; Signe Ingvarsen; Henrik Jessen Jürgensen; Maria C. Melander; Lars Kjøller; Amanda Moyer; Christian Honoré; Charlotte A. Madsen; Peter Garred; Sven Burgdorf; Thomas H. Bugge; Niels Behrendt; Lars H. Engelholm

The degradation of collagens, the most abundant proteins of the extracellular matrix, is involved in numerous physiological and pathological conditions including cancer invasion. An important turnover pathway involves cellular internalization and degradation of large, soluble collagen fragments, generated by initial cleavage of the insoluble collagen fibers. We have previously observed that in primary mouse fibroblasts, this endocytosis of collagen fragments is dependent on the receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180. Others have identified additional mechanisms of collagen uptake, with different associated receptors, in other cell types. These receptors include β1-integrins, being responsible for collagen phagocytosis, and the mannose receptor. We have now utilized a newly developed monoclonal antibody against uPARAP/Endo180, which down-regulates the receptor protein level on treated cells, to examine the role of uPARAP/Endo180 as a mediator of collagen internalization by a wide range of cultured cell types. With the exception of macrophages, all cells that proved capable of efficient collagen internalization were of mesenchymal origin and all of these utilized uPARAP/Endo180 for their collagen uptake process. Macrophages internalized collagen in a process mediated by the mannose receptor, a protein belonging to the same protein family as uPARAP/Endo180. β1-Integrins were found not to be involved in the endocytosis of soluble collagen, irrespectively of whether this was mediated by uPARAP/Endo180 or the mannose receptor. This further distinguishes these pathways from the phagocytic uptake of particulate collagen.


Journal of Histochemistry and Cytochemistry | 2007

Increased Expression of the Collagen Internalization Receptor uPARAP/Endo180 in the Stroma of Head and Neck Cancer

Jay Sulek; Rebecca A. Wagenaar-Miller; Jessica Shireman; Alfredo A. Molinolo; Daniel H. Madsen; Lars H. Engelholm; Niels Behrendt; Thomas H. Bugge

Local growth, invasion, and metastasis of malignancies of the head and neck involve extensive degradation and remodeling of the underlying, collagen-rich connective tissue. Urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180 is an endocytic receptor recently shown to play a critical role in the uptake and intracellular degradation of collagen by mesenchymal cells. As a step toward determining the putative function of uPARAP/Endo180 in head and neck cancer progression, we used immunohistochemistry to determine the expression of this collagen internalization receptor in 112 human squamous cell carcinomas and 19 normal or tumor-adjacent head and neck tissue samples from the tongue, gingiva, cheek, tonsils, palate, floor of mouth, larynx, maxillary sinus, upper jaw, nasopharynx/nasal cavity, and lymph nodes. Specificity of detection was verified by staining of serial sections with two different monoclonal antibodies against two non-overlapping epitopes on uPARAP/Endo180 and by the use of isotype-matched non-immune antibodies. uPARAP/Endo180 expression was observed in stromal fibroblast-like, vimentin-positive cells. Furthermore, expression of the collagen internalization receptor was increased in tumor stroma compared with tumor-adjacent connective tissue or normal submucosal connective tissue and was most prominent in poorly differentiated tumors. These data suggest that uPARAP/Endo180 participates in the connective tissue destruction during head and neck squamous cell carcinoma progression by mediating cellular uptake and lysosomal degradation of collagen.


Frontiers in Bioscience | 2009

The collagen receptor uPARAP/Endo180.

Lars H. Engelholm; Signe Ingvarsen; Henrik Jessen Jürgensen; Thore Hillig; Daniel H. Madsen; Nielsen Bs; Niels Behrendt

The uPAR-associated protein (uPARAP/Endo180), a type-1 membrane protein belonging to the mannose receptor family, is an endocytic receptor for collagen. Through this endocytic function, the protein takes part in a previously unrecognized mechanism of collagen turnover. uPARAP/Endo180 can bind and internalize both intact and partially degraded collagens. In some turnover pathways, the function of the receptor probably involves an interplay with certain matrix-degrading proteases whereas, in other physiological processes, redundant mechanisms involving both endocytic and pericellular collagenolysis seem to operate in parallel. On certain cell types, uPARAP/Endo180 occurs in a complex with the urokinase plasminogen activator receptor (uPAR) where it seems to fulfill other functions in addition to collagenolysis. uPARAP/Endo180 is expressed on various mesenchymal cells, including subpopulations of fibroblasts, osteoblasts and chondrocytes, generally in conjunction with matrix turnover and collagenolysis. A striking expression is found in developing bone where the collagenolytic function of uPARAP/Endo180 is one of the rate-limiting steps in growth. In murine breast tumors, the endocytic function of the receptor in collagen breakdown seems to be involved in invasive tumor growth.


Journal of Biological Chemistry | 2013

Targeting a single function of the multifunctional matrix metalloprotease MT1-MMP. Impact on lymphangiogenesis

Signe Ingvarsen; Astrid Porse; Charlotte Erpicum; Ludovic Maertens; Henrik Jessen Jürgensen; Daniel H. Madsen; Maria C. Melander; Henrik Gårdsvoll; Gunilla Høyer-Hansen; Agnès Noël; Kenn Holmbeck; Lars H. Engelholm; Niels Behrendt

Background: Therapeutic strategies for MMP targeting have limited selectivity. Results: A novel, specific mAb against MT1-MMP selectively blocks proMMP-2 activation. This antibody inhibited lymphatic vessel sprouting. Conclusion: A single function of a multifunctional MMP was blocked selectively and completely. MT1-MMP mediated proMMP-2 activation is involved in lymphangiogenesis. Significance: This supports development of therapeutic MMP targeting and the understanding of lymphangiogenesis. The group of matrix metalloproteases (MMPs) is responsible for multiple processes of extracellular matrix remodeling in the healthy body but also for matrix and tissue destruction during cancer invasion and metastasis. The understanding of the contributions from each individual MMP, both in healthy and pathological events, has been complicated by the lack of specific inhibitors and the fact that some of the potent MMPs are multifunctional enzymes. These factors have also hampered the setup of therapeutic strategies targeting MMP activity. A tempting target is the membrane-associated MT1-MMP, which has well-documented importance in matrix degradation but which takes part in more than one pathway in this regard. In this report, we describe the selective targeting of a single function of this enzyme by means of a specific monoclonal antibody against MT1-MMP, raised in an MT1-MMP knock-out mouse. The antibody blocks the enzyme ability to activate proMMP-2 without interfering with the collagenolytic function or the general proteolytic activity of MT1-MMP. Using this antibody, we have shown that the MT1-MMP-catalyzed activation of proMMP-2 is involved in the outgrowth of cultured lymphatic endothelial cells in a collagen matrix in vitro, as well as in lymphatic vessel sprouting assayed ex vivo. This is the first example of the complete inactivation of a single function of a multifunctional MMP and the use of this strategy to pursue its role.


Biological Chemistry | 2008

Dimerization of endogenous MT1-MMP is a regulatory step in the activation of the 72-kDa gelatinase MMP-2 on fibroblasts and fibrosarcoma cells

Signe Ingvarsen; Daniel H. Madsen; Thore Hillig; Leif R. Lund; Kenn Holmbeck; Niels Behrendt; Lars H. Engelholm

Abstract The secreted gelatinase matrix metalloprotease-2 (MMP-2) and the membrane-anchored matrix metalloprotease MT1-MMP (MMP-14), are central players in pericellular proteolysis in extracellular matrix degradation. In addition to possessing a direct collagenolytic and gelatinolytic activity, these enzymes take part in a cascade pathway in which MT1-MMP activates the MMP-2 proenzyme. This reaction occurs in an interplay with the matrix metalloprotease inhibitor, TIMP-2, and the proposed mechanism involves two molecules of MT1-MMP in complex with one TIMP-2 molecule. We provide positive evidence that proMMP-2 activation is governed by dimerization of MT1-MMP on the surface of fibroblasts and fibrosarcoma cells. Even in the absence of transfection and overexpression, dimerization of MT1-MMP markedly stimulated the formation of active MMP-2 products. The effect demonstrated here was brought about by a monoclonal antibody that binds specifically to MT1-MMP as shown by immunofluorescence experiments. The antibody has no effect on the catalytic activity. The effect on proMMP-2 activation involves MT1-MMP dimerization because it requires the divalent monoclonal antibody, with no effect obtained with monovalent Fab fragments. Since only a negligible level of proMMP-2 activation was obtained with MT1-MMP-expressing cells in the absence of dimerization, our results identify the dimerization event as a critical level of proteolytic cascade regulation.


Journal of Biological Chemistry | 2008

A composite role of vitronectin and urokinase in the modulation of cell morphology upon expression of the urokinase receptor.

Thore Hillig; Lars H. Engelholm; Signe Ingvarsen; Daniel H. Madsen; Henrik Gårdsvoll; Jørgen K. Larsen; Michael Ploug; Keld Danø; Lars Kjøller; Niels Behrendt

The urokinase receptor, urokinase receptor (uPAR), is a glycosylphosphatidylinositol-anchored membrane protein engaged in pericellular proteolysis and cellular adhesion, migration, and modulation of cell morphology. A direct matrix adhesion is mediated through the binding of uPAR to vitronectin, and this event is followed by downstream effects including changes in the cytoskeletal organization. However, it remains unclear whether the adhesion through uPAR-vitronectin is the only event capable of initiating these morphological rearrangements or whether lateral interactions between uPAR and integrins can induce the same response. In this report, we show that both of these triggering mechanisms can be operative and that uPAR-dependent modulation of cell morphology can indeed occur independently of a direct vitronectin binding. Expression of wild-type uPAR on HEK293 cells led to pronounced vitronectin adhesion and cytoskeletal rearrangements, whereas a mutant uPAR, uPARW32A with defective vitronectin binding, failed to induce both phenomena. However, upon saturation of uPARW32A with the protease ligand, pro-uPA, or its receptor-binding domain, the ability to induce cytoskeletal rearrangements was restored, although this did not rescue the uPAR-vitronectin binding and adhesion capability. On the other hand, using other uPAR variants, we could show that uPAR-vitronectin adhesion is indeed capable and sufficient to induce the same morphological rearrangements. This was shown with cells expressing a different single-site mutant, uPARY57A, in the presence of a synthetic uPAR-binding peptide, as well as with wild-type uPAR, which underwent cytoskeletal rearrangements even when cultivated in uPA-deficient serum. Blocking of integrins with an Arg-Gly-Asp-containing peptide counteracted the matrix contacts necessary to initiate the uPAR-dependent cytoskeletal rearrangements, whereas inactivation of the Rac signaling pathway in all cases suppressed the occurrence of the same events.


OncoImmunology | 2013

Imaging collagen degradation in vivo highlights a key role for M2-polarized macrophages in extracellular matrix degradation.

Daniel H. Madsen; Thomas H. Bugge

We have recently described an assay for imaging interstitial collagen degradation in vivo, which allows for the identification of cell types and molecules involved in collagen turnover in the course of pathological and physiological tissue remodeling. The assay revealed a dominant role of receptor-mediated intracellular collagen degradation by M2-polarized macrophages in extracellular matrix turnover.


Cell Reports | 2017

Tumor-Associated Macrophages Derived from Circulating Inflammatory Monocytes Degrade Collagen through Cellular Uptake

Daniel H. Madsen; Henrik J. Jürgensen; Majken Siersbæk; Dorota Ewa Kuczek; Loretta Grey Cloud; Shihui Liu; Niels Behrendt; Lars Grøntved; Roberto Weigert; Thomas H. Bugge

Collaboration


Dive into the Daniel H. Madsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas H. Bugge

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kenn Holmbeck

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Kjøller

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Thore Hillig

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge