Signe Ingvarsen
Finsen Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Signe Ingvarsen.
Journal of Biological Chemistry | 2007
Daniel H. Madsen; Lars H. Engelholm; Signe Ingvarsen; Thore Hillig; Rebecca A. Wagenaar-Miller; Lars Kjøller; Henrik Gårdsvoll; Gunilla Høyer-Hansen; Kenn Holmbeck; Thomas H. Bugge; Niels Behrendt
The collagens of the extracellular matrix are the most abundant structural proteins in the mammalian body. In tissue remodeling and in the invasive growth of malignant tumors, collagens constitute an important barrier, and consequently, the turnover of collagen is a rate-limiting process in these events. A recently discovered turnover route with importance for tumor growth involves intracellular collagen degradation and is governed by the collagen receptor, urokinase plasminogen activator receptor-associated protein (uPARAP or Endo180). The interplay between this mechanism and extracellular collagenolysis is not known. In this report, we demonstrate the existence of a new, composite collagen breakdown pathway. Thus, fibroblast-mediated collagen degradation proceeds preferentially as a sequential mechanism in which extracellular collagenolysis is followed by uPARAP/Endo180-mediated endocytosis of large collagen fragments. First, we show that collagen that has been pre-cleaved by a mammalian collagenase is taken up much more efficiently than intact, native collagen by uPARAP/Endo180-positive cells. Second, we demonstrate that this preference is governed by the acquisition of a gelatin-like structure by the collagen, occurring upon collagenase-mediated cleavage under native conditions. Third, we demonstrate that the growth of uPARAP/Endo180-deficient fibroblasts on a native collagen matrix leads to substantial extracellular accumulation of well defined collagen fragments, whereas, wild-type fibroblasts possess the ability to direct an organized and complete degradation sequence comprising both the initial cleavage, the endocytic uptake, and the intracellular breakdown of collagen.
Journal of Biological Chemistry | 2011
Daniel H. Madsen; Signe Ingvarsen; Henrik Jessen Jürgensen; Maria C. Melander; Lars Kjøller; Amanda Moyer; Christian Honoré; Charlotte A. Madsen; Peter Garred; Sven Burgdorf; Thomas H. Bugge; Niels Behrendt; Lars H. Engelholm
The degradation of collagens, the most abundant proteins of the extracellular matrix, is involved in numerous physiological and pathological conditions including cancer invasion. An important turnover pathway involves cellular internalization and degradation of large, soluble collagen fragments, generated by initial cleavage of the insoluble collagen fibers. We have previously observed that in primary mouse fibroblasts, this endocytosis of collagen fragments is dependent on the receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180. Others have identified additional mechanisms of collagen uptake, with different associated receptors, in other cell types. These receptors include β1-integrins, being responsible for collagen phagocytosis, and the mannose receptor. We have now utilized a newly developed monoclonal antibody against uPARAP/Endo180, which down-regulates the receptor protein level on treated cells, to examine the role of uPARAP/Endo180 as a mediator of collagen internalization by a wide range of cultured cell types. With the exception of macrophages, all cells that proved capable of efficient collagen internalization were of mesenchymal origin and all of these utilized uPARAP/Endo180 for their collagen uptake process. Macrophages internalized collagen in a process mediated by the mannose receptor, a protein belonging to the same protein family as uPARAP/Endo180. β1-Integrins were found not to be involved in the endocytosis of soluble collagen, irrespectively of whether this was mediated by uPARAP/Endo180 or the mannose receptor. This further distinguishes these pathways from the phagocytic uptake of particulate collagen.
Journal of Biological Chemistry | 2011
Henrik J. Jürgensen; Daniel Hargbøl Madsen; Signe Ingvarsen; Maria C. Melander; Henrik Gårdsvoll; László Patthy; Lars H. Engelholm; Niels Behrendt
Collagens make up the most abundant component of interstitial extracellular matrices and basement membranes. Collagen remodeling is a crucial process in many normal physiological events and in several pathological conditions. Some collagen subtypes contain specific carbohydrate side chains, the function of which is poorly known. The endocytic collagen receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180 plays an important role in matrix remodeling through its ability to internalize collagen for lysosomal degradation. uPARAP/Endo180 is a member of the mannose receptor protein family. These proteins all include a fibronectin type II domain and a series of C-type lectin-like domains, of which only a minor part possess carbohydrate recognition activity. At least two of the family members, uPARAP/Endo180 and the mannose receptor, interact with collagens. The molecular basis for this interaction is known to involve the fibronectin type II domain but nothing is known about the function of the lectin domains in this respect. In this study, we have investigated a possible role of the single active lectin domain of uPARAP/Endo180 in the interaction with collagens. By expressing truncated recombinant uPARAP/Endo180 proteins and analyzing their interaction with collagens with high and low levels of glycosylation we demonstrated that this lectin domain interacts directly with glycosylated collagens. This interaction is functionally important because it was found to modulate the endocytic efficiency of the receptor toward highly glycosylated collagens such as basement membrane collagen IV. Surprisingly, this property was not shared by the mannose receptor, which internalized glycosylated collagens independently of its lectin function. This role of modulating its uptake efficiency by a specific receptor is a previously unrecognized function of collagen glycosylation.
Frontiers in Bioscience | 2009
Lars H. Engelholm; Signe Ingvarsen; Henrik Jessen Jürgensen; Thore Hillig; Daniel H. Madsen; Nielsen Bs; Niels Behrendt
The uPAR-associated protein (uPARAP/Endo180), a type-1 membrane protein belonging to the mannose receptor family, is an endocytic receptor for collagen. Through this endocytic function, the protein takes part in a previously unrecognized mechanism of collagen turnover. uPARAP/Endo180 can bind and internalize both intact and partially degraded collagens. In some turnover pathways, the function of the receptor probably involves an interplay with certain matrix-degrading proteases whereas, in other physiological processes, redundant mechanisms involving both endocytic and pericellular collagenolysis seem to operate in parallel. On certain cell types, uPARAP/Endo180 occurs in a complex with the urokinase plasminogen activator receptor (uPAR) where it seems to fulfill other functions in addition to collagenolysis. uPARAP/Endo180 is expressed on various mesenchymal cells, including subpopulations of fibroblasts, osteoblasts and chondrocytes, generally in conjunction with matrix turnover and collagenolysis. A striking expression is found in developing bone where the collagenolytic function of uPARAP/Endo180 is one of the rate-limiting steps in growth. In murine breast tumors, the endocytic function of the receptor in collagen breakdown seems to be involved in invasive tumor growth.
Journal of Biological Chemistry | 2013
Signe Ingvarsen; Astrid Porse; Charlotte Erpicum; Ludovic Maertens; Henrik Jessen Jürgensen; Daniel H. Madsen; Maria C. Melander; Henrik Gårdsvoll; Gunilla Høyer-Hansen; Agnès Noël; Kenn Holmbeck; Lars H. Engelholm; Niels Behrendt
Background: Therapeutic strategies for MMP targeting have limited selectivity. Results: A novel, specific mAb against MT1-MMP selectively blocks proMMP-2 activation. This antibody inhibited lymphatic vessel sprouting. Conclusion: A single function of a multifunctional MMP was blocked selectively and completely. MT1-MMP mediated proMMP-2 activation is involved in lymphangiogenesis. Significance: This supports development of therapeutic MMP targeting and the understanding of lymphangiogenesis. The group of matrix metalloproteases (MMPs) is responsible for multiple processes of extracellular matrix remodeling in the healthy body but also for matrix and tissue destruction during cancer invasion and metastasis. The understanding of the contributions from each individual MMP, both in healthy and pathological events, has been complicated by the lack of specific inhibitors and the fact that some of the potent MMPs are multifunctional enzymes. These factors have also hampered the setup of therapeutic strategies targeting MMP activity. A tempting target is the membrane-associated MT1-MMP, which has well-documented importance in matrix degradation but which takes part in more than one pathway in this regard. In this report, we describe the selective targeting of a single function of this enzyme by means of a specific monoclonal antibody against MT1-MMP, raised in an MT1-MMP knock-out mouse. The antibody blocks the enzyme ability to activate proMMP-2 without interfering with the collagenolytic function or the general proteolytic activity of MT1-MMP. Using this antibody, we have shown that the MT1-MMP-catalyzed activation of proMMP-2 is involved in the outgrowth of cultured lymphatic endothelial cells in a collagen matrix in vitro, as well as in lymphatic vessel sprouting assayed ex vivo. This is the first example of the complete inactivation of a single function of a multifunctional MMP and the use of this strategy to pursue its role.
Biological Chemistry | 2008
Signe Ingvarsen; Daniel H. Madsen; Thore Hillig; Leif R. Lund; Kenn Holmbeck; Niels Behrendt; Lars H. Engelholm
Abstract The secreted gelatinase matrix metalloprotease-2 (MMP-2) and the membrane-anchored matrix metalloprotease MT1-MMP (MMP-14), are central players in pericellular proteolysis in extracellular matrix degradation. In addition to possessing a direct collagenolytic and gelatinolytic activity, these enzymes take part in a cascade pathway in which MT1-MMP activates the MMP-2 proenzyme. This reaction occurs in an interplay with the matrix metalloprotease inhibitor, TIMP-2, and the proposed mechanism involves two molecules of MT1-MMP in complex with one TIMP-2 molecule. We provide positive evidence that proMMP-2 activation is governed by dimerization of MT1-MMP on the surface of fibroblasts and fibrosarcoma cells. Even in the absence of transfection and overexpression, dimerization of MT1-MMP markedly stimulated the formation of active MMP-2 products. The effect demonstrated here was brought about by a monoclonal antibody that binds specifically to MT1-MMP as shown by immunofluorescence experiments. The antibody has no effect on the catalytic activity. The effect on proMMP-2 activation involves MT1-MMP dimerization because it requires the divalent monoclonal antibody, with no effect obtained with monovalent Fab fragments. Since only a negligible level of proMMP-2 activation was obtained with MT1-MMP-expressing cells in the absence of dimerization, our results identify the dimerization event as a critical level of proteolytic cascade regulation.
The Journal of Pathology | 2012
Daniel Hargbøl Madsen; Henrik J. Jürgensen; Signe Ingvarsen; Maria C. Melander; Ben Vainer; Kristoffer L. Egerod; Andreas Hald; Birgitte Rønø; Charlotte A. Madsen; Thomas H. Bugge; Lars H. Engelholm; Niels Behrendt
Fibrosis of the liver and its end‐stage, cirrhosis, represent major health problems worldwide. In these fibrotic conditions, activated fibroblasts and hepatic stellate cells display a net deposition of collagen. This collagen deposition is a major factor leading to liver dysfunction, thus making it crucially important to understand both the collagen synthesis and turnover mechanisms in this condition. Here we show that the endocytic collagen receptor, uPARAP/Endo180, is a major determinant in governing the balance between collagen deposition and degradation. Cirrhotic human livers displayed a marked up‐regulation of uPARAP/Endo180 in activated fibroblasts and hepatic stellate cells located close to the collagen deposits. In a hepatic stellate cell line, uPARAP/Endo180 was shown to be active in, and required for, the uptake and intracellular degradation of collagen. To evaluate the functional importance of this collagen receptor in vivo, liver fibrosis was induced in uPARAP/Endo180‐deficient mice and littermate wild‐type mice by chronic CCl4 administration. A strong up‐regulation of uPARAP/Endo180 was observed in wild‐type mice, and a quantitative comparison of collagen deposits in the two groups of mice clearly revealed a fibrosis protective role of uPARAP/Endo180. This effect appeared to directly reflect the activity of the collagen receptor, since no compensatory events were noted when comparing the mRNA expression profiles of the two groups of mice in an array system focused on matrix‐degrading components. This function of uPARAP/Endo180 defines a novel role of intracellular collagen turnover in fibrosis protection. Copyright
Journal of Biological Chemistry | 2008
Thore Hillig; Lars H. Engelholm; Signe Ingvarsen; Daniel H. Madsen; Henrik Gårdsvoll; Jørgen K. Larsen; Michael Ploug; Keld Danø; Lars Kjøller; Niels Behrendt
The urokinase receptor, urokinase receptor (uPAR), is a glycosylphosphatidylinositol-anchored membrane protein engaged in pericellular proteolysis and cellular adhesion, migration, and modulation of cell morphology. A direct matrix adhesion is mediated through the binding of uPAR to vitronectin, and this event is followed by downstream effects including changes in the cytoskeletal organization. However, it remains unclear whether the adhesion through uPAR-vitronectin is the only event capable of initiating these morphological rearrangements or whether lateral interactions between uPAR and integrins can induce the same response. In this report, we show that both of these triggering mechanisms can be operative and that uPAR-dependent modulation of cell morphology can indeed occur independently of a direct vitronectin binding. Expression of wild-type uPAR on HEK293 cells led to pronounced vitronectin adhesion and cytoskeletal rearrangements, whereas a mutant uPAR, uPARW32A with defective vitronectin binding, failed to induce both phenomena. However, upon saturation of uPARW32A with the protease ligand, pro-uPA, or its receptor-binding domain, the ability to induce cytoskeletal rearrangements was restored, although this did not rescue the uPAR-vitronectin binding and adhesion capability. On the other hand, using other uPAR variants, we could show that uPAR-vitronectin adhesion is indeed capable and sufficient to induce the same morphological rearrangements. This was shown with cells expressing a different single-site mutant, uPARY57A, in the presence of a synthetic uPAR-binding peptide, as well as with wild-type uPAR, which underwent cytoskeletal rearrangements even when cultivated in uPA-deficient serum. Blocking of integrins with an Arg-Gly-Asp-containing peptide counteracted the matrix contacts necessary to initiate the uPAR-dependent cytoskeletal rearrangements, whereas inactivation of the Rac signaling pathway in all cases suppressed the occurrence of the same events.
Journal of Bone and Mineral Research | 2009
Ludmila Szabova; Susan S. Yamada; Helen Wimer; Kaliopi Chrysovergis; Signe Ingvarsen; Niels Behrendt; Lars H. Engelholm; Kenn Holmbeck
Skeletal formation is dependent on timely recruitment of skeletal stem cells and their ensuing synthesis and remodeling of the major fibrillar collagens, type I collagen and type II collagen, in bone and cartilage tissues during development and postnatal growth. Loss of the major collagenolytic activity associated with the membrane‐type 1 matrix metalloproteinase (MT1‐MMP) results in disrupted skeletal development and growth in both cartilage and bone, where MT1‐MMP is required for pericellular collagen dissolution. We show here that reconstitution of MT1‐MMP activity in the type II collagen‐expressing cells of the skeleton rescues not only diminished chondrocyte proliferation, but surprisingly, also results in amelioration of the severe skeletal dysplasia associated with MT1‐MMP deficiency through enhanced bone formation. Consistent with this increased bone formation, type II collagen was identified in bone cells and skeletal stem/progenitor cells of wildtype mice. Moreover, bone marrow stromal cells isolated from mice expressing MT1‐MMP under the control of the type II collagen promoter in an MT1‐MMP‐deficient background showed enhanced bone formation in vitro and in vivo compared with cells derived from nontransgenic MT1‐MMP‐deficient littermates. These observations show that type II collagen is not stringently confined to the chondrocyte but is expressed in skeletal stem/progenitor cells (able to regenerate bone, cartilage, myelosupportive stroma, marrow adipocytes) and in the chondrogenic and osteogenic lineage progeny where collagenolytic activity is a requisite for proper cell and tissue function.
PLOS ONE | 2013
Daniel H. Madsen; Henrik J. Jürgensen; Signe Ingvarsen; Maria C. Melander; Reidar Albrechtsen; Andreas Hald; Kenn Holmbeck; Thomas H. Bugge; Niels Behrendt; Lars H. Engelholm
A well-coordinated remodeling of uncalcified collagen matrices is a pre-requisite for bone development and homeostasis. Collagen turnover proceeds through different pathways, either involving extracellular reactions exclusively, or being dependent on endocytic processes. Extracellular collagen degradation requires the action of secreted or membrane attached collagenolytic proteases, whereas the alternative collagen degradation pathway proceeds intracellularly after receptor-mediated uptake and delivery to the lysosomes. In this study we have examined the functional interplay between the extracellular collagenase, MMP-2, and the endocytic collagen receptor, uPARAP, by generating mice with combined deficiency of both components. In both uPARAP-deficient and MMP-2-deficient adult mice the length of the tibia and femur was decreased, along with a reduced bone mineral density and trabecular bone quality. An additional decrease in bone length was observed when combining the two deficiencies, pointing to both components being important for the remodeling processes in long bone growth. In agreement with results found by others, a different effect of MMP-2 deficiency was observed in the distinct bone structures of the calvaria. These membranous bones were found to be thickened in MMP-2-deficient mice, an effect likely to be related to an accompanying defect in the canalicular system. Surprisingly, both of the latter defects in MMP-2-deficient mice were counteracted by concurrent uPARAP deficiency, demonstrating that the collagen receptor does not support the same matrix remodeling processes as the MMP in the growth of the skull. We conclude that both uPARAP and MMP-2 take part in matrix turnover processes important for bone growth. However, in some physiological situations, these two components do not support the same step in the growth process.