Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James McCracken is active.

Publication


Featured researches published by James McCracken.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq

James W. Wilson; C. M. Ott; K. Höner zu Bentrup; Rajee Ramamurthy; L. Quick; Steffen Porwollik; Pui Cheng; Michael McClelland; George Tsaprailis; Timothy Radabaugh; Andrea M. Hunt; D. Fernandez; Emily Richter; Miti Shah; Michelle Kilcoyne; Lokesh Joshi; Mayra Nelman-Gonzalez; S. Hing; Macarena Parra; P. Dumars; Kelly Norwood; R. Bober; J. Devich; A. Ruggles; Carla Goulart; Mark Rupert; Louis S. Stodieck; P. Stafford; L. Catella; Michael J. Schurr

A comprehensive analysis of both the molecular genetic and phenotypic responses of any organism to the space flight environment has never been accomplished because of significant technological and logistical hurdles. Moreover, the effects of space flight on microbial pathogenicity and associated infectious disease risks have not been studied. The bacterial pathogen Salmonella typhimurium was grown aboard Space Shuttle mission STS-115 and compared with identical ground control cultures. Global microarray and proteomic analyses revealed that 167 transcripts and 73 proteins changed expression with the conserved RNA-binding protein Hfq identified as a likely global regulator involved in the response to this environment. Hfq involvement was confirmed with a ground-based microgravity culture model. Space flight samples exhibited enhanced virulence in a murine infection model and extracellular matrix accumulation consistent with a biofilm. Strategies to target Hfq and related regulators could potentially decrease infectious disease risks during space flight missions and provide novel therapeutic options on Earth.


PLOS ONE | 2008

Media ion composition controls regulatory and virulence response of Salmonella in spaceflight.

James W. Wilson; C. Mark Ott; Laura Quick; Richard Davis; Kerstin Höner zu Bentrup; Aurélie Crabbé; Emily Richter; Shameema Sarker; Jennifer Barrila; Steffen Porwollik; Pui Cheng; Michael McClelland; George Tsaprailis; Timothy Radabaugh; Andrea M. Hunt; Miti Shah; Mayra Nelman-Gonzalez; Steve Hing; Macarena Parra; Paula Dumars; Kelly Norwood; Ramona Bober; Jennifer Devich; Ashleigh Ruggles; Autumn Cdebaca; Satro Narayan; Joseph G. Benjamin; Carla Goulart; Mark Rupert; Luke Catella

The spaceflight environment is relevant to conditions encountered by pathogens during the course of infection and induces novel changes in microbial pathogenesis not observed using conventional methods. It is unclear how microbial cells sense spaceflight-associated changes to their growth environment and orchestrate corresponding changes in molecular and physiological phenotypes relevant to the infection process. Here we report that spaceflight-induced increases in Salmonella virulence are regulated by media ion composition, and that phosphate ion is sufficient to alter related pathogenesis responses in a spaceflight analogue model. Using whole genome microarray and proteomic analyses from two independent Space Shuttle missions, we identified evolutionarily conserved molecular pathways in Salmonella that respond to spaceflight under all media compositions tested. Identification of conserved regulatory paradigms opens new avenues to control microbial responses during the infection process and holds promise to provide an improved understanding of human health and disease on Earth.


Journal of Biological Chemistry | 2012

Lipid Peroxidation Product 4-Hydroxy-trans-2-nonenal Causes Endothelial Activation by Inducing Endoplasmic Reticulum Stress

Elena Vladykovskaya; Srinivas D. Sithu; Petra Haberzettl; Nalinie S. Wickramasinghe; Michael L. Merchant; Bradford G. Hill; James McCracken; Abhinav Agarwal; Susan M. Dougherty; Sharon A. Gordon; Dale A. Schuschke; Oleg A. Barski; Timothy E. O'Toole; Stanley E. D'Souza; Aruni Bhatnagar; Sanjay K. Srivastava

Background: Oxidized lipids cause endothelial activation. Results: Endothelial activation by the lipid peroxidation product, 4-hydroxy-trans-2-nonenal, was associated with ER stress and was prevented by chaperones of protein folding. Conclusion: ER stress regulates endothelial activation by oxidized lipids. Significance: Vascular inflammation caused by oxidized lipids could be attenuated by decreasing ER stress. Lipid peroxidation products, such as 4-hydroxy-trans-2-nonenal (HNE), cause endothelial activation, and they increase the adhesion of the endothelium to circulating leukocytes. Nevertheless, the mechanisms underlying these effects remain unclear. We observed that in HNE-treated human umbilical vein endothelial cells, some of the protein-HNE adducts colocalize with the endoplasmic reticulum (ER) and that HNE forms covalent adducts with several ER chaperones that assist in protein folding. We also found that at concentrations that did not induce apoptosis or necrosis, HNE activated the unfolded protein response, leading to an increase in XBP-1 splicing, phosphorylation of protein kinase-like ER kinase and eukaryotic translation initiation factor 2α, and the induction of ATF3 and ATF4. This increase in eukaryotic translation initiation factor 2α phosphorylation was prevented by transfection with protein kinase-like ER kinase siRNA. Treatment with HNE increased the expression of the ER chaperones, GRP78 and HERP. Exposure to HNE led to a depletion of reduced glutathione and an increase in the production of reactive oxygen species (ROS); however, glutathione depletion and ROS production by tert-butyl-hydroperoxide did not trigger the unfolded protein response. Pretreatment with a chemical chaperone, phenylbutyric acid, or adenoviral transfection with ATF6 attenuated HNE-induced monocyte adhesion and IL-8 induction. Moreover, phenylbutyric acid and taurine-conjugated ursodeoxycholic acid attenuated HNE-induced leukocyte rolling and their firm adhesion to the endothelium in rat cremaster muscle. These data suggest that endothelial activation by HNE is mediated in part by ER stress, induced by mechanisms independent of ROS production or glutathione depletion. The induction of ER stress may be a significant cause of vascular inflammation induced by products of oxidized lipids.


Journal of Investigative Dermatology | 2008

HSP70i Accelerates Depigmentation in a Mouse Model of Autoimmune Vitiligo

Cecele J. Denman; James McCracken; Vidhya Hariharan; Jared Klarquist; Kepa Oyarbide-Valencia; José A. Guevara-Patiño; I. Caroline Le Poole

Vitiligo is a T-cell-mediated autoimmune disease of the skin. Progressive depigmentation accelerates in response to stress. Personal trauma, contact with bleaching phenols, overexposure to UV, and mechanical injury can lead to progressive loss of melanocytes. This study was focused on the role of stress protein heat shock protein (HSP)70 for translating stress into an autoimmune disease to melanocytes. Intracellular HSP70 can act as a cytoprotectant, preventing apoptosis in cells under stress. Isoform HSP70i can be secreted by live cells, and in prior in vitro studies, HSP70 has been shown to activate dendritic cells and elicit an immune response to chaperoned proteins and peptides. Here, the role of HSP70 in precipitating and perpetuating vitiligo was assessed in vivo in a mouse model of autoimmune vitiligo. In this model, depigmentation was introduced by gene gun vaccination with eukaryotic expression plasmids encoding melanocyte differentiation antigens. Inclusion of human and mouse-derived inducible HSP70 in the vaccination protocol significantly increased and accelerated depigmentation in this model, accompanied by the induction of prolonged humoral responses to HSP70. Cytotoxicity toward targets loaded with a K(b)-restricted tyrosinase-related protein 2-derived peptide correlated with depigmentation. The data presented strongly support a role for HSP70i in progressive depigmentation in vivo.


Circulation Research | 2016

Exposure to Fine Particulate Air Pollution Is Associated With Endothelial Injury and Systemic Inflammation

C. Arden Pope; Aruni Bhatnagar; James McCracken; Wesley Abplanalp; Daniel J. Conklin; Timothy E. O’Toole

RATIONALE Epidemiological evidence indicates that exposures to fine particulate matter air pollution (PM2.5) contribute to global burden of disease, primarily as a result of increased risk of cardiovascular morbidity and mortality. However, mechanisms by which PM2.5 exposure induces cardiovascular injury remain unclear. PM2.5-induced endothelial dysfunction and systemic inflammation have been implicated, but direct evidence is lacking. OBJECTIVE To examine whether acute exposure to PM2.5 is associated with endothelial injury and systemic inflammation. METHODS AND RESULTS Blood was collected from healthy, nonsmoking, young adults during 3 study periods that included episodes of elevated PM2.5 levels. Microparticles and immune cells in blood were measured by flow cytometry, and plasma cytokine/growth factors were measured using multiplexing laser beads. PM2.5 exposure was associated with the elevated levels of endothelial microparticles (annexin V+/CD41-/CD31+), including subtypes expressing arterial-, venous-, and lung-specific markers, but not microparticles expressing CD62+. These changes were accompanied by suppressed circulating levels of proangiogenic growth factors (EGF [epidermal growth factor], sCD40L [soluble CD40 ligand], PDGF [platelet-derived growth factor], RANTES [regulated on activation, normal T-cell-expressed and secreted], GROα [growth-regulated protein α], and VEGF [vascular endothelial growth factor]), and an increase in the levels of antiangiogenic (TNFα [tumor necrosis factor α], IP-10 [interferon γ-induced protein 10]), and proinflammatory cytokines (MCP-1 [monocyte chemoattractant protein 1], MIP-1α/β [macrophage inflammatory protein 1α/β], IL-6 [interleukin 6], and IL-1β [interleukin 1β]), and markers of endothelial adhesion (sICAM-1 [soluble intercellular adhesion molecule 1] and sVCAM-1 [soluble vascular cellular adhesion molecule 1]). PM2.5 exposure was also associated with an inflammatory response characterized by elevated levels of circulating CD14+, CD16+, CD4+, and CD8+, but not CD19+ cells. CONCLUSIONS Episodic PM2.5 exposures are associated with increased endothelial cell apoptosis, an antiangiogenic plasma profile, and elevated levels of circulating monocytes and T, but not B, lymphocytes. These changes could contribute to the pathogenic sequelae of atherogenesis and acute coronary events.


Journal of the American Heart Association | 2014

Acrolein exposure is associated with increased cardiovascular disease risk.

Natasha DeJarnett; Daniel J. Conklin; Daniel W. Riggs; John Myers; Timothy E. O'Toole; Ihab Hamzeh; Stephen G. Wagner; Atul Chugh; Kenneth S. Ramos; Sanjay Srivastava; Deirdre Higdon; David J. Tollerud; Andrew P. DeFilippis; Carrie Becher; Brad Wyatt; James McCracken; Wes Abplanalp; Shesh N. Rai; Tiffany Ciszewski; Zhengzhi Xie; Ray Yeager; Sumanth D. Prabhu; Aruni Bhatnagar

Background Acrolein is a reactive aldehyde present in high amounts in coal, wood, paper, and tobacco smoke. It is also generated endogenously by lipid peroxidation and the oxidation of amino acids by myeloperoxidase. In animals, acrolein exposure is associated with the suppression of circulating progenitor cells and increases in thrombosis and atherogenesis. The purpose of this study was to determine whether acrolein exposure in humans is also associated with increased cardiovascular disease (CVD) risk. Methods and Results Acrolein exposure was assessed in 211 participants of the Louisville Healthy Heart Study with moderate to high (CVD) risk by measuring the urinary levels of the major acrolein metabolite—3‐hydroxypropylmercapturic acid (3‐HPMA). Generalized linear models were used to assess the association between acrolein exposure and parameters of CVD risk, and adjusted for potential demographic confounders. Urinary 3‐HPMA levels were higher in smokers than nonsmokers and were positively correlated with urinary cotinine levels. Urinary 3‐HPMA levels were inversely related to levels of both early (AC133+) and late (AC133−) circulating angiogenic cells. In smokers as well as nonsmokers, 3‐HPMA levels were positively associated with both increased levels of platelet–leukocyte aggregates and the Framingham Risk Score. No association was observed between 3‐HPMA and plasma fibrinogen. Levels of C‐reactive protein were associated with 3‐HPMA levels in nonsmokers only. Conclusions Regardless of its source, acrolein exposure is associated with platelet activation and suppression of circulating angiogenic cell levels, as well as increased CVD risk.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2011

Acrolein Inhalation Prevents Vascular Endothelial Growth Factor–Induced Mobilization of Flk-1+/Sca-1+ Cells in Mice

Laura Wheat; Petra Haberzettl; Jason Hellmann; Shahid P. Baba; Matthew Bertke; Jongmin Lee; James McCracken; Timothy E. O'Toole; Aruni Bhatnagar; Daniel J. Conklin

Objective—Acrolein is a toxic chemical present in tobacco, wood, and coal smoke, as well as automobile exhaust. Because exposure to these pollutants is associated with an increase in cardiovascular disease risk, we studied the effects of acrolein on Flk-1+/Sca-1+ cells that are involved in vascular repair. Methods and Results—In adult male C57BL/6 mice, inhalation of acrolein (1 part per million [ppm], 6 hours/day for 4 days or 5 ppm for 2 or 6 hours) led to the formation of protein-acrolein adducts in the bone marrow and diminished levels of plasma nitric oxide metabolites and circulating Flk-1+/Sca-1+ but not Sca-1+-only cells. Acrolein exposure increased the number of apoptotic Flk-1+/Sca-1+ cells in circulation and increased bone marrow–derived cells with endothelial characteristics (DiI-ac-low-density lipoprotein [DiI-acLDL]/UE-lectin and Flk-1+/Sca-1+) in culture. Deficits in the circulating levels of Flk-1+/Sca-1+ cells were reversed after 7 days of recovery in acrolein-free air. Exposure to acrolein blocked vascular endothelial growth factor (VEGF)/AMD3100-stimulated mobilization of Flk-1+/Sca-1+ but not Sca-1+-only cells and prevented VEGF-induced phosphorylation of Akt and endothelial nitric oxide synthase in the aorta. Conclusion—Inhalation of acrolein increases apoptosis and suppresses the circulating levels of Flk-1+/Sca-1+ cells while increasing these cells in the bone marrow and preventing their mobilization by VEGF. Exposure to acrolein-rich pollutants could impair vascular repair capacity.


Medical Mycology | 2005

Cytokine and chemokine expression in the central nervous system associated with protective cell-mediated immunity against Cryptococcus neoformans

William C. Uicker; Hester A. Doyle; James McCracken; Mary Langlois; Kent L. Buchanan

Cryptococcus neoformans is a yeast that causes cryptococcosis, a life-threatening disease that develops following inhalation and dissemination of the organisms. C. neoformans has a predilection for the central nervous system (CNS) and mortality is most frequently associated with meningoencephalitis. Susceptibility to cryptococcosis is increased in patients with deficiencies in cell-mediated immunity (CMI). Because cryptococcal CNS infections are associated with mortality and diagnosis of cryptococcosis is often not made until after dissemination to the CNS, a better understanding of host defense mechanisms against C. neoformans in the CNS is needed to design improved therapies for immunocompromised individuals suffering from cryptococcosis. Using a mouse model, we previously described a protective cell-mediated immune response induced in the periphery that limited the growth of C. neoformans in the CNS. In the current investigation, we examined cytokine and chemokine expression in the CNS to identify factors important in achieving protective immunity. We observed increased expression of IL-1beta, TNF-alpha, IFN-gamma, MCP-1, RANTES, and IP-10 in C. neoformans-infected brains of immune mice compared to control mice suggesting that these cytokines and chemokines are associated with the protective immune response. Furthermore, the Th1-type cytokines TNF-alpha and IFN-gamma, but not the Th2 cytokines IL-4 and IL-5, were secreted at significantly higher levels in C. neoformans-infected brains of immune mice compared to control mice. Our results demonstrate that cytokines and chemokines associated with CMI are produced following infection in the CNS of immunized mice, and the expression of these factors correlates with protection against C. neoformans in the CNS.


Stem Cells | 2013

Protein O-GlcNAcylation Is a Novel Cytoprotective Signal in Cardiac Stem Cells†‡§

Ayesha Zafir; Ryan Readnower; Bethany W. Long; James McCracken; Allison L. Aird; Alejandro Alvarez; Timothy D. Cummins; Qianhong Li; Bradford G. Hill; Aruni Bhatnagar; Sumanth D. Prabhu; Roberto Bolli; Steven P. Jones

Clinical trials demonstrate the regenerative potential of cardiac stem cell (CSC) therapy in the postinfarcted heart. Despite these encouraging preliminary clinical findings, the basic biology of these cells remains largely unexplored. The principal requirement for cell transplantation is to effectively prime them for survival within the unfavorable environment of the infarcted myocardium. In the adult mammalian heart, the β‐O‐linkage of N‐acetylglucosamine (i.e., O‐GlcNAc) to proteins is a unique post‐translational modification that confers cardioprotection from various otherwise lethal stressors. It is not known whether this signaling system exists in CSCs. In this study, we demonstrate that protein O‐GlcNAcylation is an inducible stress response in adult murine Sca‐1+/lin− CSCs and exerts an essential prosurvival role. Posthypoxic CSCs responded by time‐dependently increasing protein O‐GlcNAcylation upon reoxygenation. We used pharmacological interventions for loss‐ and gain‐of‐function, that is, enzymatic inhibition of O‐GlcNAc transferase (OGT) (adds the O‐GlcNAc modification to proteins) by TT04, or inhibition of OGA (removes O‐GlcNAc) by thiamet‐G (ThG). Reduction in the O‐GlcNAc signal (via TT04, or OGT gene deletion using Cre‐mediated recombination) significantly sensitized CSCs to posthypoxic injury, whereas augmenting O‐GlcNAc levels (via ThG) enhanced cell survival. Diminished O‐GlcNAc levels render CSCs more susceptible to the onset of posthypoxic apoptotic processes via elevated poly(ADP‐ribose) polymerase cleavage due to enhanced caspase‐3/7 activation, whereas promoting O‐GlcNAcylation can serve as a pre‐emptive antiapoptotic signal regulating the survival of CSCs. Thus, we report the primary demonstration of protein O‐GlcNAcylation as an important prosurvival signal in CSCs, which could enhance CSC survival prior to in vivo autologous transfer. STEM CELLS 2013;31:765–775


Cancer Immunology, Immunotherapy | 2010

CD34-based enrichment of genetically engineered human T cells for clinical use results in dramatically enhanced tumor targeting

Håkan Norell; Yi Zhang; James McCracken; Telma Martins da Palma; Aaron Lesher; Yueying Liu; Jeffrey J. Roszkowski; Anquanette Temple; Glenda G. Callender; Timothy M. Clay; Rimas J. Orentas; José A. Guevara-Patiño; Michael I. Nishimura

Objective clinical responses can be achieved in melanoma patients by infusion of T cell receptor (TCR) gene transduced T cells. Although promising, the therapy is still largely ineffective, as most patients did not benefit from treatment. That only a minority of the infused T cells were genetically modified and that these were extensively expanded ex vivo may have prevented their efficacy. We developed novel and generally applicable retroviral vectors that allow rapid and efficient selection of T cells transduced with human TCRs. These vectors encode two TCR chains and a truncated CD34 molecule (CD34t) in a single mRNA transcript. Transduced T cells were characterized and the effects of CD34-based enrichment of redirected T cells were evaluated. Both CD8+ and CD4+ T cells could be transduced and efficiently co-expressed all introduced transgenes on their surface. Importantly, more than fivefold enrichment of both the frequency of transduced cells and the specific anti-tumor reactivity of the effector population could be achieved by magnetic beads-based enrichment procedures readily available for clinical grade hematopoietic stem cell isolation. This CD34-based enrichment technology will improve the feasibility of adoptive transfer of clinically relevant effectors. In addition to their enhanced tumor recognition, the enriched redirected T cells may also show superior reactivity and persistence in vivo due to the high purity of transduced cells and the shortened ex vivo culture.

Collaboration


Dive into the James McCracken's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shesh N. Rai

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge