Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel W. Riggs is active.

Publication


Featured researches published by Daniel W. Riggs.


Circulation | 2010

Cardioprotective and Antiapoptotic Effects of Heme Oxygenase-1 in the Failing Heart

Guangwu Wang; Tariq Hamid; Rachel Keith; Guihua Zhou; Charles R. Partridge; Xilin Xiang; Justin R Kingery; Robert K. Lewis; Qianhong Li; D. Gregg Rokosh; Rachael L. Ford; Francis G. Spinale; Daniel W. Riggs; Sanjay Srivastava; Aruni Bhatnagar; Roberto Bolli; Sumanth D. Prabhu

Background— Heme oxygenase-1 (HO-1) is an inducible stress-response protein that imparts antioxidant and antiapoptotic effects. However, its pathophysiological role in cardiac remodeling and chronic heart failure (HF) is unknown. We hypothesized that induction of HO-1 in HF alleviates pathological remodeling. Methods and Results— Adult male nontransgenic and myocyte-restricted HO-1 transgenic mice underwent either sham operation or coronary ligation to induce HF. Four weeks after ligation, nontransgenic HF mice exhibited postinfarction left ventricular (LV) remodeling and dysfunction, hypertrophy, fibrosis, oxidative stress, apoptosis, and reduced capillary density, associated with a 2-fold increase in HO-1 expression in noninfarcted myocardium. Compared with nontransgenic mice, HO-1 transgenic HF mice exhibited significantly (P<0.05) improved postinfarction survival (94% versus 57%) and less LV dilatation (end-diastolic volume, 46±8 versus 85±32 &mgr;L), mechanical dysfunction (ejection fraction, 65±9% versus 49±16%), hypertrophy (LV/tibia length 4.4±0.4 versus 5.2±0.6 mg/mm), interstitial fibrosis (11.2±3.1% versus 18.5±3.5%), and oxidative stress (3-fold reduction in tissue malondialdehyde). Moreover, myocyte-specific HO-1 overexpression in HF promoted tissue neovascularization and ameliorated myocardial p53 expression (2-fold reduction) and apoptosis. In isolated mitochondria, mitochondrial permeability transition was inhibited by HO-1 in a carbon monoxide (CO)–dependent manner and was recapitulated by the CO donor tricarbonylchloro(glycinato)ruthenium(II) (CORM-3). HO-1–derived CO also prevented H2O2-induced cardiomyocyte apoptosis and cell death. Finally, in vivo treatment with CORM-3 alleviated postinfarction LV remodeling, p53 expression, and apoptosis. Conclusions— HO-1 induction in the failing heart is an important cardioprotective adaptation that opposes pathological LV remodeling, and this effect is mediated, at least in part, by CO-dependent inhibition of mitochondrial permeability transition and apoptosis. Augmentation of HO-1 or its product, CO, may represent a novel therapeutic strategy for ameliorating HF.


Chemico-Biological Interactions | 2011

Bioenergetic function in cardiovascular cells: the importance of the reserve capacity and its biological regulation

Brian E. Sansbury; Steven P. Jones; Daniel W. Riggs; Victor M. Darley-Usmar; Bradford G. Hill

The ability of the cell to generate sufficient energy through oxidative phosphorylation and to maintain healthy pools of mitochondria are critical for survival and maintenance of normal biological function, especially during periods of increased oxidative stress. Mitochondria in most cardiovascular cells function at a basal level that only draws upon a small fraction of the total bioenergetic capability of the organelle; the apparent respiratory state of mitochondria in these cells is often close to state 4. The difference between the basal and maximal activity, equivalent to state 3, of the respiratory chain is called the reserve capacity. We hypothesize that the reserve capacity serves the increased energy demands for maintenance of organ function and cellular repair. However, the factors that determine the volume of the reserve capacity and its relevance to biology are not well understood. In this study, we first examined whether responses to 4-hydroxynonenal (HNE), a lipid peroxidation product found in atherosclerotic lesions and the diseased heart, differ between vascular smooth muscle cells, adult mouse cardiomyocytes, and rat neonatal cardiomyocytes. In both types of cardiomyocytes, oxygen consumption increased after HNE treatment, while oxygen consumption in smooth muscle cells decreased. The increase in oxygen consumption in cardiomyocytes decreased the reserve capacity and shifted the apparent respiratory state closer to state 3. Neonatal rat cardiomyocytes respiring on pyruvate alone had a fourfold higher reserve capacity than cells with glucose as the sole substrate, and these cells were more resistant to mitochondrial dysfunction induced by 4-HNE. The integration of the concepts of reserve capacity and state-apparent are discussed along with the proposal of two potential models by which mitochondria respond to stress.


Journal of the American Heart Association | 2014

Acrolein exposure is associated with increased cardiovascular disease risk.

Natasha DeJarnett; Daniel J. Conklin; Daniel W. Riggs; John Myers; Timothy E. O'Toole; Ihab Hamzeh; Stephen G. Wagner; Atul Chugh; Kenneth S. Ramos; Sanjay Srivastava; Deirdre Higdon; David J. Tollerud; Andrew P. DeFilippis; Carrie Becher; Brad Wyatt; James McCracken; Wes Abplanalp; Shesh N. Rai; Tiffany Ciszewski; Zhengzhi Xie; Ray Yeager; Sumanth D. Prabhu; Aruni Bhatnagar

Background Acrolein is a reactive aldehyde present in high amounts in coal, wood, paper, and tobacco smoke. It is also generated endogenously by lipid peroxidation and the oxidation of amino acids by myeloperoxidase. In animals, acrolein exposure is associated with the suppression of circulating progenitor cells and increases in thrombosis and atherogenesis. The purpose of this study was to determine whether acrolein exposure in humans is also associated with increased cardiovascular disease (CVD) risk. Methods and Results Acrolein exposure was assessed in 211 participants of the Louisville Healthy Heart Study with moderate to high (CVD) risk by measuring the urinary levels of the major acrolein metabolite—3‐hydroxypropylmercapturic acid (3‐HPMA). Generalized linear models were used to assess the association between acrolein exposure and parameters of CVD risk, and adjusted for potential demographic confounders. Urinary 3‐HPMA levels were higher in smokers than nonsmokers and were positively correlated with urinary cotinine levels. Urinary 3‐HPMA levels were inversely related to levels of both early (AC133+) and late (AC133−) circulating angiogenic cells. In smokers as well as nonsmokers, 3‐HPMA levels were positively associated with both increased levels of platelet–leukocyte aggregates and the Framingham Risk Score. No association was observed between 3‐HPMA and plasma fibrinogen. Levels of C‐reactive protein were associated with 3‐HPMA levels in nonsmokers only. Conclusions Regardless of its source, acrolein exposure is associated with platelet activation and suppression of circulating angiogenic cell levels, as well as increased CVD risk.


Toxicology and Applied Pharmacology | 2010

Exposure to acrolein by inhalation causes platelet activation.

Srinivas D. Sithu; Sanjay Srivastava; Maqsood A. Siddiqui; Elena Vladykovskaya; Daniel W. Riggs; Daniel J. Conklin; Petra Haberzettl; Timothy E. O'Toole; Aruni Bhatnagar; Stanley E. D'Souza

Acrolein is a common air pollutant that is present in high concentrations in wood, cotton, and tobacco smoke, automobile exhaust and industrial waste and emissions. Exposure to acrolein containing environmental pollutants such as tobacco smoke and automobile exhaust has been linked to the activation of the coagulation and hemostasis pathways and thereby to the predisposition of thrombotic events in human. To examine the effects of acrolein on platelets, adult male C57Bl/6 mice were subjected acute (5ppm for 6h) or sub-chronic (1ppm, 6h/day for 4days) acrolein inhalation exposures. The acute exposure to acrolein did not cause pulmonary inflammation and oxidative stress, dyslipidemia or induce liver damage or muscle injury. Platelet GSH levels in acrolein-exposed mice were comparable to controls, but acrolein-exposure increased the abundance of protein-acrolein adducts in platelets. Platelets isolated from mice, exposed to both acute and sub-chronic acrolein levels, showed increased ADP-induced platelet aggregation. Exposure to acrolein also led to an increase in the indices of platelet activation such as the formation of platelet-leukocyte aggregates in the blood, plasma PF4 levels, and increased platelet-fibrinogen binding. The bleeding time was decreased in acrolein exposed mice. Plasma levels of PF4 were also increased in mice exposed to environmental tobacco smoke. Similar to inhalation exposure, acrolein feeding to mice also increased platelet activation and established a pro-thrombotic state in mice. Together, our data suggest that acrolein is an important contributing factor to the pro-thrombotic risk in human exposure to pollutants such as tobacco smoke or automobile exhaust, or through dietary consumption.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2015

Residential Proximity to Major Roadways Is Associated With Increased Levels of AC133+ Circulating Angiogenic Cells

Natasha DeJarnett; Ray Yeager; Daniel J. Conklin; Jongmin Lee; Timothy E. O’Toole; James McCracken; Wes Abplanalp; Sanjay K. Srivastava; Daniel W. Riggs; Ihab Hamzeh; Stephen G. Wagner; Atul Chugh; Andrew P. DeFilippis; Tiffany Ciszewski; Brad Wyatt; Carrie Becher; Deirdre Higdon; Kenneth S. Ramos; David J. Tollerud; John Myers; Shesh N. Rai; Jasmit Shah; Nagma Zafar; Sathya Krishnasamy; Sumanth D. Prabhu; Aruni Bhatnagar

Objectives—Previous studies have shown that residential proximity to a roadway is associated with increased cardiovascular disease risk. Yet, the nature of this association remains unclear, and its effect on individual cardiovascular disease risk factors has not been assessed. The objective of this study was to determine whether residential proximity to roadways influences systemic inflammation and the levels of circulating angiogenic cells. Approach and Results—In a cross-sectional study, cardiovascular disease risk factors, blood levels of C-reactive protein, and 15 antigenically defined circulating angiogenic cell populations were measured in participants (n=316) with moderate-to-high cardiovascular disease risk. Attributes of roadways surrounding residential locations were assessed using geographic information systems. Associations between road proximity and cardiovascular indices were analyzed using generalized linear models. Close proximity (<50 m) to a major roadway was associated with lower income and higher rates of smoking but not C-reactive protein levels. After adjustment for potential confounders, the levels of circulating angiogenic cells in peripheral blood were significantly elevated in people living in close proximity to a major roadway (CD31+/AC133+, AC133+, CD34+/AC133+, and CD34+/45dim/AC133+ cells) and positively associated with road segment distance (CD31+/AC133+, AC133+, and CD34+/AC133+ cells), traffic intensity (CD31+/AC133+ and AC133+ cells), and distance-weighted traffic intensity (CD31+/34+/45+/AC133+ cells). Conclusions—Living close to a major roadway is associated with elevated levels of circulating cells positive for the early stem marker AC133+. This may reflect an increased need for vascular repair. Levels of these cells in peripheral blood may be a sensitive index of cardiovascular injury because of residential proximity to roadways.


Circulation Research | 2015

Genetic Deficiency of Glutathione S-Transferase P Increases Myocardial Sensitivity to Ischemia-Reperfusion Injury

Daniel J. Conklin; Yiru Guo; Ganapathy Jagatheesan; Peter J. Kilfoil; Petra Haberzettl; Bradford G. Hill; Shahid P. Baba; Luping Guo; Karin Wetzelberger; Detlef Obal; D. Gregg Rokosh; Russell A. Prough; Sumanth D. Prabhu; Murugesan Velayutham; Jay L. Zweier; J. David Hoetker; Daniel W. Riggs; Sanjay Srivastava; Roberto Bolli; Aruni Bhatnagar

RATIONALE Myocardial ischemia-reperfusion (I/R) results in the generation of oxygen-derived free radicals and the accumulation of lipid peroxidation-derived unsaturated aldehydes. However, the contribution of aldehydes to myocardial I/R injury has not been assessed. OBJECTIVE We tested the hypothesis that removal of aldehydes by glutathione S-transferase P (GSTP) diminishes I/R injury. METHODS AND RESULTS In adult male C57BL/6 mouse hearts, Gstp1/2 was the most abundant GST transcript followed by Gsta4 and Gstm4.1, and GSTP activity was a significant fraction of the total GST activity. mGstp1/2 deletion reduced total GST activity, but no compensatory increase in GSTA and GSTM or major antioxidant enzymes was observed. Genetic deficiency of GSTP did not alter cardiac function, but in comparison with hearts from wild-type mice, the hearts isolated from GSTP-null mice were more sensitive to I/R injury. Disruption of the GSTP gene also increased infarct size after coronary occlusion in situ. Ischemia significantly increased acrolein in hearts, and GSTP deficiency induced significant deficits in the metabolism of the unsaturated aldehyde, acrolein, but not in the metabolism of 4-hydroxy-trans-2-nonenal or trans-2-hexanal; on ischemia, the GSTP-null hearts accumulated more acrolein-modified proteins than wild-type hearts. GSTP deficiency did not affect I/R-induced free radical generation, c-Jun N-terminal kinase activation, or depletion of reduced glutathione. Acrolein exposure induced a hyperpolarizing shift in INa, and acrolein-induced cell death was delayed by SN-6, a Na(+)/Ca(++) exchange inhibitor. Cardiomyocytes isolated from GSTP-null hearts were more sensitive than wild-type myocytes to acrolein-induced protein crosslinking and cell death. CONCLUSIONS GSTP protects the heart from I/R injury by facilitating the detoxification of cytotoxic aldehydes, such as acrolein.


Frontiers in Physiology | 2016

FVB/NJ Mice Are a Useful Model for Examining Cardiac Adaptations to Treadmill Exercise

Andrew A. Gibb; Lindsey A. McNally; Daniel W. Riggs; Daniel J. Conklin; Aruni Bhatnagar; Bradford G. Hill

Mice are commonly used to examine the mechanisms by which exercise improves cardiometabolic health; however, exercise compliance and adaptations are often strain-dependent or are variable due to inconsistency in exercise training protocols. In this study, we examined nocturnal/diurnal behavior, treadmill exercise compliance, and systemic as well as cardiac-specific exercise adaptations in two commonly used mouse strains, C57BL/6J, and FVB/NJ mice. Metabolic cage analysis indicated a strong nocturnal nature of C57BL/6J mice, whereas FVB/NJ mice showed no circadian element to activity, food or water intake, VO2, or VCO2. Initial exercise capacity tests revealed that, compared with C57BL/6J mice, FVB/NJ mice are capable of achieving nearly 2-fold higher workloads prior to exhaustion. FVB/NJ mice tested during the day were capable of achieving significantly more work compared with their night-tested counterparts. Following 4 weeks of training, FVB/NJ mice showed significant increases in exercise capacity as well as physiologic cardiac growth characterized by enlarged myocytes and higher mitochondrial DNA content. C57BL/6J mice showed no increases in exercise capacity or cardiac growth regardless of whether they exercised during the day or the night. This lack of adaptation in C57BL/6J mice was attributable, at least in part, to their progressive loss of compliance to the treadmill training protocol. We conclude that the FVB/NJ strain is a useful and robust mouse model for examining cardiac adaptations to treadmill exercise and that treadmill training during daytime hours does not negatively affect exercise compliance or capacity.


Regeneration | 2018

High throughput measurement of metabolism in planarians reveals activation of glycolysis during regeneration

Edie A. Osuma; Daniel W. Riggs; Andrew A. Gibb; Bradford G. Hill

Abstract Planarians are outstanding models for studying mechanisms of regeneration; however, there are few methods to measure changes in their metabolism. Examining metabolism in planarians is important because the regenerative process is dependent on numerous integrated metabolic pathways, which provide the energy required for tissue repair as well as the ability to synthesize the cellular building blocks needed to form new tissue. Therefore, we standardized an extracellular flux analysis method to measure mitochondrial and glycolytic activity in live planarians during normal growth as well as during regeneration. Small, uninjured planarians showed higher rates of oxygen consumption compared with large planarians, with no difference in glycolytic activity; however, glycolysis increased during planarian regeneration. Exposure of planarians to koningic acid, a specific inhibitor of glyceraldehyde‐3‐phosphate dehydrogenase, completely abolished extracellular acidification with little effect on oxygen consumption, which suggests that the majority of glucose catabolized in planarians is fated for aerobic glycolysis. These studies describe a useful method for measuring respiration and glycolysis in planarians and provide data implicating changes in glucose metabolism in the regenerative response.


BMJ Open | 2018

Protocol to assess the impact of tobacco-induced volatile organic compounds on cardiovascular risk in a cross- sectional cohort: Cardiovascular Injury due to Tobacco Use study.

Rachel Keith; Jessica L. Fetterman; Daniel W. Riggs; Timothy E. O’Toole; Jessica L Nystoriak; Monika Holbrook; Pawel Lorkiewicz; Aruni Bhatnagar; Andrew P. DeFilippis; Naomi M Hamburg

Introduction Tobacco use leads to increased mortality, the majority of which is attributed to cardiovascular disease. Despite this knowledge, the early cardiovascular impact of tobacco product use is not well understood. Tobacco use increases exposure to harmful and potentially harmful constituents including volatile organic compounds (VOCs) such as acrolein and crotonaldehyde, which may contribute to cardiovascular risk. The link between exposure patterns, risk profiles and demographic distribution of tobacco product users, particularly users of new and emerging products, are not well known. Therefore, we designed the Cardiovascular Injury due to Tobacco Use (CITU) study to assess population characteristics, demographic features, exposure patterns and cardiovascular risk in relation to tobacco. Methods and analysis We present the design and methodology of the CITU study, a cross-sectional observational tobacco study conducted in Boston, Massachusetts and Louisville, Kentucky starting in 2014. Healthy participants 21–45 years of age who use tobacco products, including electronic nicotine devices, or who never used tobacco are being recruited. The study aims to recruit an evenly split cohort of African-Americans and Caucasians, that is, sex balanced for evaluation of self-reported tobacco exposure, VOC exposure and tobacco-induced injury profiling. Detailed information about participant’s demographics, health status and lifestyle is also collected. Ethics and dissemination The study protocol was approved institutional review boards at both participating universities. All study protocols will protect participant confidentiality. Results from the study will be disseminated via peer-reviewed journals and presented at scientific conferences.


PLOS ONE | 2017

Benzene exposure is associated with cardiovascular disease risk

Wesley Abplanalp; Natasha DeJarnett; Daniel W. Riggs; Daniel J. Conklin; James McCracken; Sanjay K. Srivastava; Zhengzhi Xie; Shesh N. Rai; Aruni Bhatnagar; Timothy E. O’Toole

Benzene is a ubiquitous, volatile pollutant present at high concentrations in toxins (e.g. tobacco smoke) known to increase cardiovascular disease (CVD) risk. Despite its prevalence, the cardiovascular effects of benzene have rarely been studied. Hence, we examined whether exposure to benzene is associated with increased CVD risk. The effects of benzene exposure in mice were assessed by direct inhalation, while the effects of benzene exposure in humans was assessed in 210 individuals with mild to high CVD risk by measuring urinary levels of the benzene metabolite trans,trans-muconic acid (t,t-MA). Generalized linear models were used to assess the association between benzene exposure and CVD risk. Mice inhaling volatile benzene had significantly reduced levels of circulating angiogenic cells (Flk-1+/Sca-1+) as well as an increased levels of plasma low-density lipoprotein (LDL) compared with control mice breathing filtered air. In the human cohort, urinary levels of t,t-MA were inversely associated several populations of circulating angiogenic cells (CD31+/34+/45+, CD31+/34+/45+/AC133–, CD34+/45+/AC133+). Although t,t-MA was not associated with plasma markers of inflammation or thrombosis, t,t-MA levels were higher in smokers and in individuals with dyslipidemia. In smokers, t,t-MA levels were positively associated with urinary metabolites of nicotine (cotinine) and acrolein (3-hydroxymercapturic acid). Levels of t,t-MA were also associated with CVD risk as assessed using the Framingham Risk Score and this association was independent of smoking. Thus, benzene exposure is associated with increased CVD risk and deficits in circulating angiogenic cells in both smokers and non-smokers.

Collaboration


Dive into the Daniel W. Riggs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shesh N. Rai

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ray Yeager

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

Sanjay K. Srivastava

Texas Tech University Health Sciences Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge