Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel J. Maltman is active.

Publication


Featured researches published by Daniel J. Maltman.


Biochemical Society Transactions | 2010

Developments in three-dimensional cell culture technology aimed at improving the accuracy of in vitro analyses

Daniel J. Maltman; Stefan Przyborski

Drug discovery programmes require accurate in vitro systems for drug screening and testing. Traditional cell culture makes use of 2D (two-dimensional) surfaces for ex vivo cell growth. In such environments, cells are forced to adopt unnatural characteristics, including aberrant flattened morphologies. Therefore there is a strong demand for new cell culture platforms which allow cells to grow and respond to their environment in a more realistic manner. The development of 3D (three-dimensional) alternative substrates for in vitro cell growth has received much attention, and it is widely acknowledged that 3D cell growth is likely to more accurately reflect the in vivo tissue environments from which cultured cells are derived. 3D cell growth techniques promise numerous advantages over 2D culture, including enhanced proliferation and differentiation of stem cells. The present review focuses on the development of scaffold technologies for 3D cell culture.


Biomacromolecules | 2013

Galactose-Functionalized PolyHIPE Scaffolds for Use in Routine Three Dimensional Culture of Mammalian Hepatocytes

Adam S. Hayward; Ahmed M. Eissa; Daniel J. Maltman; Naoko Sano; Stefan Przyborski; Neil R. Cameron

Three-dimensional (3D) cell culture is regarded as a more physiologically relevant method of growing cells in the laboratory compared to traditional monolayer cultures. Recently, the application of polystyrene-based scaffolds produced using polyHIPE technology (porous polymers derived from high internal phase emulsions) for routine 3D cell culture applications has generated very promising results in terms of improved replication of native cellular function in the laboratory. These materials, which are now available as commercial scaffolds, are superior to many other 3D cell substrates due to their high porosity, controllable morphology, and suitable mechanical strength. However, until now there have been no reports describing the surface-modification of these materials for enhanced cell adhesion and function. This study, therefore, describes the surface functionalization of these materials with galactose, a carbohydrate known to specifically bind to hepatocytes via the asialoglycoprotein receptor (ASGPR), to further improve hepatocyte adhesion and function when growing on the scaffold. We first modify a typical polystyrene-based polyHIPE to produce a cell culture scaffold carrying pendent activated-ester functionality. This was achieved via the incorporation of pentafluorophenyl acrylate (PFPA) into the initial styrene (STY) emulsion, which upon polymerization formed a polyHIPE with a porosity of 92% and an average void diameter of 33 μm. Histological analysis showed that this polyHIPE was a suitable 3D scaffold for hepatocyte cell culture. Galactose-functionalized scaffolds were then prepared by attaching 2′-aminoethyl-β-d-galactopyranoside to this PFPA functionalized polyHIPE via displacement of the labile pentafluorophenyl group, to yield scaffolds with approximately ca. 7–9% surface carbohydrate. Experiments with primary rat hepatocytes showed that cellular albumin synthesis was greatly enhanced during the initial adhesion/settlement period of cells on the galactose-functionalized material, suggesting that the surface carbohydrates are accessible and selective to cells entering the scaffold. This porous polymer scaffold could, therefore, have important application as a 3D scaffold that offers enhanced hepatocyte adhesion and functionality.


Xenobiotica | 2012

Generation of proliferating human hepatocytes using Upcyte® technology: characterisation and applications in induction and cytotoxicity assays.

Alexandra Burkard; Caroline Dähn; Stefan Heinz; Anne Zutavern; Vera Sonntag-Buck; Daniel J. Maltman; Stefan Przyborski; Nicola J. Hewitt; Joris Braspenning

We have developed a novel technique which causes primary human hepatocytes to proliferate by transducing them with genes that upregulate their proliferation. Upcyte® hepatocytes did not form colonies in soft agar and are not immortalised anchorage-independent cells. Confluent cultures expressed liver-specific proteins, produced urea and stored glycogen. CYP activities were low but similar to that in 5-day cultures of primary human hepatocytes. CYP1A2 and CYP3A4 were inducible; moreover, upcyte® hepatocytes predicted the in vivo induction potencies of known CYP3A4 inducers using the “relative induction score” prediction model. Placing cells into 3D culture increased their basal CYP2B6 and CYP3A4 basal activities and induction responses. Phase 2 activities (UGTs, SULTs and GSTs) were comparable to activities in freshly isolated hepatocytes. Upcyte® hepatocytes were markedly more sensitive to the hepatotoxin, α-amanitin, than HepG2 cells, indicating functional OATP1B3 uptake. The cytotoxicity of aflatoxin B1, was decreased in upcyte® hepatocytes by co-incubation with the CYP3A4 inhibitor, ketoconazole. Upcyte® hepatocytes also differentiated between ten hepatotoxic and eight non-hepatotoxic compounds. In conclusion, upcyte® hepatocyte cultures have a differentiated phenotype and exhibit functional phase 1 and 2 activities. These data support the use of upcyte® hepatocytes for CYP induction and cytotoxicity screening.


Organic and Biomolecular Chemistry | 2008

Synthesis and evaluation of synthetic retinoid derivatives as inducers of stem cell differentiation

Victoria B. Christie; Jonathan H. Barnard; Andrei S. Batsanov; Caroline E. Bridgens; Emily B. Cartmell; Jonathan C. Collings; Daniel J. Maltman; Christopher P.F. Redfern; Todd B. Marder; Stefan Przyborski; Andrew Whiting

All-trans-retinoic acid (ATRA) and its associated analogues are important mediators of cell differentiation and function during the development of the nervous system. It is well known that ATRA can induce the differentiation of neural tissues from human pluripotent stem cells. However, it is not always appreciated that ATRA is highly susceptible to isomerisation when in solution, which can influence the effective concentration of ATRA and subsequently its biological activity. To address this source of variability, synthetic retinoid analogues have been designed and synthesised that retain stability during use and maintain biological function in comparison to ATRA. It is also shown that subtle modifications to the structure of the synthetic retinoid compound impacts significantly on biological activity, as when exposed to cultured human pluripotent stem cells, synthetic retinoid 4-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-ylethynyl)benzoic acid, 4a (para-isomer), induces neural differentiation similarly to ATRA. In contrast, stem cells exposed to synthetic retinoid 3-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-ylethynyl)benzoic acid, 4b (meta-isomer), produce very few neurons and large numbers of epithelial-like cells. This type of structure-activity-relationship information for such synthetic retinoid compounds will further the ability to design more targeted systems capable of mediating robust and reproducible tissue differentiation.


Journal of Neuroscience Methods | 2010

Retinoid supplementation of differentiating human neural progenitors and embryonic stem cells leads to enhanced neurogenesis in vitro

Victoria B. Christie; Daniel J. Maltman; Andrew P. Henderson; Andrew Whiting; Todd B. Marder; Majlinda Lako; Stefan Przyborski

Retinoids are important molecules involved in the development and homeostasis of the nervous system. As such, various retinoid derivatives are often found in culture media and supplement formulations to support the growth and maintenance of neural cells. However, all-trans-retinoic acid (ATRA) and its associated derivatives are light sensitive and are highly susceptible to isomerisation. This can lead to variability in retinoid concentrations and the nature of the retinoid species present in culture solutions which in turn can influence biological activity and introduce inconsistency. We have previously described the development of the synthetic retinoid derivative, EC23, as a chemically and light stable alternative that does not degrade and has biological activity similar to ATRA. In this study we demonstrate that the addition of exogenous retinoid can significantly enhance neuronal differentiation of both human neuroprogenitor and human embryonic stem cells. In the former, both ATRA and EC23 induced increased maturation and stabilisation of the axonal cytoskeleton. However, EC23 was particularly potent at lower nanomolar concentrations resulting in significantly greater neurogenesis than ATRA. In ES cells enhanced motor neuron marker expression was also detected in response to both retinoids when incorporated into an established protocol for neuronal differentiation. We propose that synthetic retinoid EC23 represents a valuable addition to the formulation of new and existing culture supplements to enhance neuronal differentiation whilst enabling improved consistency.


Toxicology in Vitro | 2010

Validation of reference gene stability for APAP hepatotoxicity studies in different in vitro systems and identification of novel potential toxicity biomarkers

Bridget C. Fox; Alison S. Devonshire; Maaike E. Schutte; Carole A. Foy; Jesus Minguez; Stefan Przyborski; Daniel J. Maltman; Maria Bokhari; Damian Marshall

Liver cell lines and primary hepatocytes are becoming increasingly valuable for in vitro toxicogenomic studies, with RT-qPCR enabling the analysis of gene expression profiles following exposure to potential hepatotoxicants. Supporting the accurate normalisation of RT-qPCR data requires the identification of reference genes which have stable expression during in vitro toxicology studies. Therefore, we performed a comprehensive analysis of reference gene stability in two routinely used cell types, (HepG2 cells and primary rat hepatocytes), and two in vitro culture systems, (2D monolayer and 3D scaffolds). A robust reference gene validation strategy was performed, consisting of geNorm analysis, to test for pair wise variation in gene expression, and statistical analysis using analysis of variance. This strategy identified stable reference genes with respect to acetaminophen treatment and time in HepG2 cells (GAPDH and PPIA), and with respect to acetaminophen treatment and culture condition in primary hepatocytes (18S rRNA and α-tubulin). Following the selection of reference genes, the novel target genes E2F7 and IL-11RA were identified as potential toxicity biomarkers for acetaminophen treatment. We conclude that accurate quantification of gene expression requires the use of a validated normalisation strategy for each species and experimental system employed.


Proteomics | 2011

Top‐down label‐free LC‐MALDI analysis of the peptidome during neural progenitor cell differentiation reveals complexity in cytoskeletal protein dynamics and identifies progenitor cell markers

Daniel J. Maltman; Sven Brand; Eckhard Belau; Rainer Paape; Detlev Suckau; Stefan Przyborski

In the field of stem cell research, there is a strong requirement for the discovery of new biomarkers that more accurately define stem and progenitor cell populations, as well as their differentiated derivatives. The very‐low‐molecular‐weight (<5 kDa) proteome/peptidome remains a poorly investigated but potentially rich source of cellular biomarkers. Here we describe a label‐free LC‐MALDI‐TOF/TOF quantification approach to screen the very‐low‐molecular‐weight proteome, i.e. the peptidome, of neural progenitor cells and derivative populations to identify potential neural stem/progenitor cell biomarkers. Twelve different proteins were identified on the basis of MS/MS analysis of peptides, which displayed differential abundance between undifferentiated and differentiated cultures. These proteins included major cytoskeletal components such as nestin, vimentin, and glial fibrillary acidic protein, which are all associated with neural development. Other cytoskeletal proteins identified were dihydropyrimidinase‐related protein 2, prothymosin (thymosin α‐1), and thymosin β‐10. These findings highlight novel stem cell/progenitor cell marker candidates and demonstrate proteomic complexity, which underlies the limitations of major intermediate filament proteins long established as neural markers.


Methods of Molecular Biology | 2008

Isolation and Fractionation of the Endoplasmic Reticulum from Castor Bean (Ricinus communis) Endosperm for Proteomic Analyses

William J. Simon; Daniel J. Maltman; Antoni R. Slabas

This chapter describes the preparation and isolation of highly purified endoplasmic reticulum (ER) from the endosperm of developing and germinating castor bean (Ricinus communis) seeds to provide a purified organelle fraction for differential proteomic analyses. The method uses a two-step ultracentrifugation protocol first described by Coughlan (1) and uses sucrose density gradients and a sucrose flotation step to yield purified ER devoid of other contaminating endomembrane material. Using a combination of one dimensional (1D) and two dimensional (2D) gel electrophoresis the complexity and reproducibility of the protein profile of the purified organelle is evaluated prior to detailed proteomic analyses using mass spectrometry based techniques.


Future Neurology | 2007

Application of proteomic technology to neural stem cell science and neurology

Daniel J. Maltman; Stefan Przyborski

There is widespread recognition of the potential that stem cells hold for the treatment and repair of a large number of disorders affecting the human CNS. Therefore, stem cell research will go hand in hand with progress in specific areas of neuroscience. Proteomics has great potential to make important contributions to the basic understanding of neurological processes, and to deliver much needed cellular biomarkers in both of these fields. This review focuses on the importance of proteomic research in neuroscience, in particular the application of biomarker discovery in stem cells and degenerative diseases of the CNS.


Archives of Toxicology | 2013

Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME

Patricio Godoy; Nicola J. Hewitt; Ute Albrecht; Melvin E. Andersen; Nariman Ansari; Sudin Bhattacharya; Johannes G. Bode; Jennifer Bolleyn; Christoph Borner; J Böttger; Albert Braeuning; Robert A. Budinsky; Britta Burkhardt; Neil R. Cameron; Giovanni Camussi; Chong Su Cho; Yun Jaie Choi; J. Craig Rowlands; Uta Dahmen; Georg Damm; Olaf Dirsch; María Teresa Donato; Jian Dong; Steven Dooley; Dirk Drasdo; Rowena Eakins; Karine Sá Ferreira; Valentina Fonsato; Joanna Fraczek; Rolf Gebhardt

Collaboration


Dive into the Daniel J. Maltman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge