Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Lai is active.

Publication


Featured researches published by Daniel Lai.


Nature | 2012

The clonal and mutational evolution spectrum of primary triple-negative breast cancers.

Sohrab P. Shah; Andrew Roth; Rodrigo Goya; Arusha Oloumi; Gavin Ha; Yongjun Zhao; Gulisa Turashvili; Jiarui Ding; Kane Tse; Gholamreza Haffari; Ali Bashashati; Leah M Prentice; Jaswinder Khattra; Angela Burleigh; Damian Yap; Virginie Bernard; Andrew McPherson; Karey Shumansky; Anamaria Crisan; Ryan Giuliany; Alireza Heravi-Moussavi; Jamie Rosner; Daniel Lai; Inanc Birol; Richard Varhol; Angela Tam; Noreen Dhalla; Thomas Zeng; Kevin Ma; Simon K. Chan

Primary triple-negative breast cancers (TNBCs), a tumour type defined by lack of oestrogen receptor, progesterone receptor and ERBB2 gene amplification, represent approximately 16% of all breast cancers. Here we show in 104 TNBC cases that at the time of diagnosis these cancers exhibit a wide and continuous spectrum of genomic evolution, with some having only a handful of coding somatic aberrations in a few pathways, whereas others contain hundreds of coding somatic mutations. High-throughput RNA sequencing (RNA-seq) revealed that only approximately 36% of mutations are expressed. Using deep re-sequencing measurements of allelic abundance for 2,414 somatic mutations, we determine for the first time—to our knowledge—in an epithelial tumour subtype, the relative abundance of clonal frequencies among cases representative of the population. We show that TNBCs vary widely in their clonal frequencies at the time of diagnosis, with the basal subtype of TNBC showing more variation than non-basal TNBC. Although p53 (also known as TP53), PIK3CA and PTEN somatic mutations seem to be clonally dominant compared to other genes, in some tumours their clonal frequencies are incompatible with founder status. Mutations in cytoskeletal, cell shape and motility proteins occurred at lower clonal frequencies, suggesting that they occurred later during tumour progression. Taken together, our results show that understanding the biology and therapeutic responses of patients with TNBC will require the determination of individual tumour clonal genotypes.


Genome Research | 2012

Integrative analysis of genome-wide loss of heterozygosity and monoallelic expression at nucleotide resolution reveals disrupted pathways in triple-negative breast cancer

Gavin Ha; Andrew Roth; Daniel Lai; Ali Bashashati; Jiarui Ding; Rodrigo Goya; Ryan Giuliany; Jamie Rosner; Arusha Oloumi; Karey Shumansky; Suet-Feung Chin; Gulisa Turashvili; Martin Hirst; Carlos Caldas; Marco A. Marra; Samuel Aparicio; Sohrab P. Shah

Loss of heterozygosity (LOH) and copy number alteration (CNA) feature prominently in the somatic genomic landscape of tumors. As such, karyotypic aberrations in cancer genomes have been studied extensively to discover novel oncogenes and tumor-suppressor genes. Advances in sequencing technology have enabled the cost-effective detection of tumor genome and transcriptome mutation events at single-base-pair resolution; however, computational methods for predicting segmental regions of LOH in this context are not yet fully explored. Consequently, whole transcriptome, nucleotide-level resolution analysis of monoallelic expression patterns associated with LOH has not yet been undertaken in cancer. We developed a novel approach for inference of LOH from paired tumor/normal sequence data and applied it to a cohort of 23 triple-negative breast cancer (TNBC) genomes. Following extensive benchmarking experiments, we describe the nucleotide-resolution landscape of LOH in TNBC and assess the consequent effect of LOH on the transcriptomes of these tumors using RNA-seq-derived measurements of allele-specific expression. We show that the majority of monoallelic expression in the transcriptomes of triple-negative breast cancer can be explained by genomic regions of LOH and establish an upper bound for monoallelic expression that may be explained by other tumor-specific modifications such as epigenetics or mutations. Monoallelically expressed genes associated with LOH reveal that cell cycle, homologous recombination and actin-cytoskeletal functions are putatively disrupted by LOH in TNBC. Finally, we show how inference of LOH can be used to interpret allele frequencies of somatic mutations and postulate on temporal ordering of mutations in the evolutionary history of these tumors.


Blood | 2014

A transgenic mouse model demonstrating the oncogenic role of mutations in the polycomb-group gene EZH2 in lymphomagenesis

Tobias Berg; Silvia Thoene; Damian Yap; Tracee Wee; Nathalie Schoeler; Patty Rosten; Emilia L. Lim; Misha Bilenky; Andy Mungall; Thomas Oellerich; Sam Lee; Courteney Lai; Patricia Umlandt; Anisa Salmi; Harry Chang; Lisa Yue; Daniel Lai; S. W. G. Cheng; Ryan D. Morin; Martin Hirst; Hubert Serve; Marco A. Marra; Gregg B. Morin; Randy D. Gascoyne; Sam Aparicio; R K Humphries

The histone methyltransferase EZH2 is frequently mutated in germinal center-derived diffuse large B-cell lymphoma and follicular lymphoma. To further characterize these EZH2 mutations in lymphomagenesis, we generated a mouse line where EZH2(Y641F) is expressed from a lymphocyte-specific promoter. Spleen cells isolated from the transgenic mice displayed a global increase in trimethylated H3K27, but the mice did not show an increased tendency to develop lymphoma. As EZH2 mutations often coincide with other mutations in lymphoma, we combined the expression of EZH2(Y641F) by crossing these transgenic mice with Eµ-Myc transgenic mice. We observed a dramatic acceleration of lymphoma development in this combination model of Myc and EZH2(Y641F). The lymphomas show histologic features of high-grade disease with a shift toward a more mature B-cell phenotype, increased cycling and gene expression, and epigenetic changes involving important pathways in B-cell regulation and function. Furthermore, they initiate disease in secondary recipients. In summary, EZH2(Y641F) can collaborate with Myc to accelerate lymphomagenesis demonstrating a cooperative role of EZH2 mutations in oncogenesis. This murine lymphoma model provides a new tool to study global changes in the epigenome caused by this frequent mutation and a promising model system for testing novel treatments.


Nature Genetics | 2017

Genomic consequences of aberrant DNA repair mechanisms stratify ovarian cancer histotypes

Yi Kan Wang; Ali Bashashati; Michael S. Anglesio; Dawn R. Cochrane; Diljot Grewal; Gavin Ha; Andrew McPherson; Hugo M. Horlings; Janine Senz; Leah M Prentice; Anthony N. Karnezis; Daniel Lai; Mohamed R Aniba; Allen W. Zhang; Karey Shumansky; Celia Siu; Adrian Wan; Melissa K. McConechy; Hector Li-Chang; Alicia A. Tone; Diane Provencher; Manon de Ladurantaye; Hubert Fleury; Aikou Okamoto; Satoshi Yanagida; Nozomu Yanaihara; Misato Saito; Andrew J. Mungall; Richard G. Moore; Marco A. Marra

We studied the whole-genome point mutation and structural variation patterns of 133 tumors (59 high-grade serous (HGSC), 35 clear cell (CCOC), 29 endometrioid (ENOC), and 10 adult granulosa cell (GCT)) as a substrate for class discovery in ovarian cancer. Ab initio clustering of integrated point mutation and structural variation signatures identified seven subgroups both between and within histotypes. Prevalence of foldback inversions identified a prognostically significant HGSC group associated with inferior survival. This finding was recapitulated in two independent cohorts (n = 576 cases), transcending BRCA1 and BRCA2 mutation and gene expression features of HGSC. CCOC cancers grouped according to APOBEC deamination (26%) and age-related mutational signatures (40%). ENOCs were divided by cases with microsatellite instability (28%), with a distinct mismatch-repair mutation signature. Taken together, our work establishes the potency of the somatic genome, reflective of diverse DNA repair deficiencies, to stratify ovarian cancers into distinct biological strata within the major histotypes.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Robust high-performance nanoliter-volume single-cell multiple displacement amplification on planar substrates

Kaston Leung; Anders Klaus; Bill K. Lin; Emma Laks; Justina Biele; Daniel Lai; Ali Bashashati; Yi-Fei Huang; Radhouane Aniba; Michelle Moksa; Adi Steif; Anne-Marie Mes-Masson; Martin Hirst; Sohrab P. Shah; Samuel Aparicio; Carl Hansen

Significance The study of cell-to-cell genomic differences in complex multicellular systems such as cancer requires genome sequencing of large numbers of single cells. This in turn necessitates the uniform amplification of single-cell genomes with high reproducibility across large numbers of cells, which remains an outstanding challenge. Here, we introduce a method that uses commercially available liquid dispensing to perform inexpensive and high-throughput single-cell whole genome amplification (WGA) in nanoliter volumes. For the first time, to our knowledge, we demonstrate robust and highly uniform nanoliter-volume single-cell WGA across a large replicate set consisting of more than 100 single cells. Comparison with previous datasets shows that this method improves uniformity and achieves levels of genome coverage and genomic variant detection comparable or superior to existing methods. The genomes of large numbers of single cells must be sequenced to further understanding of the biological significance of genomic heterogeneity in complex systems. Whole genome amplification (WGA) of single cells is generally the first step in such studies, but is prone to nonuniformity that can compromise genomic measurement accuracy. Despite recent advances, robust performance in high-throughput single-cell WGA remains elusive. Here, we introduce droplet multiple displacement amplification (MDA), a method that uses commercially available liquid dispensing to perform high-throughput single-cell MDA in nanoliter volumes. The performance of droplet MDA is characterized using a large dataset of 129 normal diploid cells, and is shown to exceed previously reported single-cell WGA methods in amplification uniformity, genome coverage, and/or robustness. We achieve up to 80% coverage of a single-cell genome at 5× sequencing depth, and demonstrate excellent single-nucleotide variant (SNV) detection using targeted sequencing of droplet MDA product to achieve a median allelic dropout of 15%, and using whole genome sequencing to achieve false and true positive rates of 9.66 × 10−6 and 68.8%, respectively, in a G1-phase cell. We further show that droplet MDA allows for the detection of copy number variants (CNVs) as small as 30 kb in single cells of an ovarian cancer cell line and as small as 9 Mb in two high-grade serous ovarian cancer samples using only 0.02× depth. Droplet MDA provides an accessible and scalable method for performing robust and accurate CNV and SNV measurements on large numbers of single cells.


Blood | 2017

Genetic profiling of MYC and BCL2 in diffuse large B-cell lymphoma determines cell of origin-specific clinical impact

Daisuke Ennishi; Anja Mottok; Susana Ben-Neriah; Hennady P. Shulha; Pedro Farinha; Fong Chun Chan; Barbara Meissner; Merrill Boyle; Christoffer Hother; Robert Kridel; Daniel Lai; Saeed Saberi; Ali Bashashati; Sohrab P. Shah; Ryan D. Morin; Marco A. Marra; Kerry J. Savage; Laurie H. Sehn; Christian Steidl; Joseph M. Connors; Randy D. Gascoyne; David W. Scott

The clinical significance of MYC and BCL2 genetic alterations in diffuse large B-cell lymphoma (DLBCL), apart from translocations, has not been comprehensively investigated using high-resolution genetic assays. In this study, we profiled MYC and BCL2 genetic alterations using next-generation sequencing and high-resolution SNP array in 347 de novo DLBCL cases treated with R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone) at the British Columbia Cancer Agency. Cell-of-origin (COO) subtype was determined by Lymph2Cx digital gene expression profiling. We showed that the incidence of MYC/BCL2 genetic alterations and their clinical significance were largely dependent on COO subtypes. It is noteworthy that the presence of BCL2 gain/amplification is significantly associated with poor outcome in activated B-cell-like and BCL2 translocation with poor outcome in germinal center B-cell subtypes, respectively. Both have prognostic significance independent of MYC/BCL2 dual expression and the International Prognostic Index (IPI). Furthermore, the combination of BCL2 genetic alterations with IPI identifies markedly worse prognostic groups within individual COO subtypes. Thus, high-resolution genomic assays identify extremely poor prognostic groups within each COO subtype on the basis of BCL2 genetic status in this large, uniformly R-CHOP-treated population-based cohort of DLBCL. These results suggest COO subtype-specific biomarkers based on BCL2 genetic alterations can be used to risk-stratify patients with DLBCL treated with immunochemotherapy.


Scientific Reports | 2017

Engineered in-vitro cell line mixtures and robust evaluation of computational methods for clonal decomposition and longitudinal dynamics in cancer

Hossein Farahani; Camila P. E. de Souza; Raewyn Billings; Damian Yap; Karey Shumansky; Adrian Wan; Daniel Lai; Anne-Marie Mes-Masson; Samuel Aparicio; Sohrab P. Shah

Characterization and quantification of tumour clonal populations over time via longitudinal sampling are essential components in understanding and predicting the response to therapeutic interventions. Computational methods for inferring tumour clonal composition from deep-targeted sequencing data are ubiquitous, however due to the lack of a ground truth biological data, evaluating their performance is difficult. In this work, we generate a benchmark data set that simulates tumour longitudinal growth and heterogeneity by in vitro mixing of cancer cell lines with known proportions. We apply four different algorithms to our ground truth data set and assess their performance in inferring clonal composition using different metrics. We also analyse the performance of these algorithms on breast tumour xenograft samples. We conclude that methods that can simultaneously analyse multiple samples while accounting for copy number alterations as a factor in allelic measurements exhibit the most accurate predictions. These results will inform future functional genomics oriented studies of model systems where time series measurements in the context of therapeutic interventions are becoming increasingly common. These studies will need computational models which accurately reflect the multi-factorial nature of allele measurement in cancer including, as we show here, segmental aneuploidies.


bioRxiv | 2017

The interface of malignant and immunologic clonal dynamics in high-grade serous ovarian cancer

Allen W. Zhang; Andrew McPherson; Katy Milne; David R. Kroeger; Phineas T. Hamilton; Alex Miranda; Tyler Funnell; Sonya Laan; Dawn R. Cochrane; Jamie L. P. Lim; Winnie Yang; Andrew Roth; Maia A. Smith; Camila de Souza; Julie Ho; Kane Tse; Thomas Zeng; Inna Shlafman; Michael R. Mayo; Richard A. Moore; Henrik Failmezger; Andreas Heindl; Yi Kan Wang; Ali Bashashati; Scott D. Brown; Daniel Lai; Adrian Wan; Cydney Nielsen; Alexandre Bouchard-Côté; Yinyin Yuan

High-grade serous ovarian cancer exhibits extensive intratumoral heterogeneity coupled with widespread intraperitoneal disease. Despite this, metastatic spread of tumor clones is non-random, implying the existence of local microenvironmental factors that shape tumor progression. We interrogated the molecular interface between tumor-infiltrating lymphocytes (TIL) and cancer cells in 143 samples from 21 patients using whole-genome sequencing, immunohistochemistry, histologic image analysis, gene expression profiling, and T- and B-cell receptor sequencing. We identify 3 immunologic response categories, which frequently co-exist within individual patients. Furthermore, epithelial CD8+ TIL were inversely associated with malignant cell diversity, evidenced by subclonal neoepitope elimination and spatial tracking between tumor and T-cell clones. Intersecting mutational signatures and immune analysis showed that foldback inversion genomic aberrations lead to worse outcomes even in the presence of cytotoxic TIL (n=433). Thus, regional variation in immune contexture mirrors the pattern of intraperitoneal malignant spread, provoking new perspectives for treatment of this challenging disease.


bioRxiv | 2018

Epiclomal: probabilistic clustering of sparse single-cell DNA methylation data

Camila P. E. de Souza; Mirela Andronescu; Tehmina Masud; Farhia Kabeer; Justina Biele; Emma Laks; Daniel Lai; Jazmine Brimhall; Beixi Wang; Edmund Su; Tony Hui; Qi Cao; Marcus Wong; Michelle Moksa; Richard A. Moore; Martin Hirst; Samuel Aparicio; Sohrab P. Shah

We present Epiclomal, a probabilistic clustering method arising from a hierarchical mixture model to simultaneously cluster sparse single-cell DNA methylation data and infer their corresponding hidden methylation profiles. Using synthetic and published single-cell CpG datasets we show that Epiclomal outperforms non-probabilistic methods and is able to handle the inherent missing data feature which dominates single-cell CpG genome sequences. Using a recently published single-cell 5mCpG sequencing method (PBAL), we show that Epiclomal discovers sub-clonal patterns of methylation in aneuploid tumour genomes, thus defining epiclones. We show that epiclones may transcend copy number determined clonal lineages, thus opening this important form of clonal analysis in cancer.


bioRxiv | 2018

clonealign: statistical integration of independent single-cell RNA & DNA-seq from human cancers

Kieran R Campbell; Adi Steif; Emma Laks; Hans Zahn; Daniel Lai; Andrew McPherson; Hossein Farahani; Farhia Kabeer; Ciara O'Flanagan; Justina Biele; Jazmine Brimhall; Beixi Wang; Pascale Walters; Alexandre Bouchard-Côté; Samuel Aparicio; Sohrab P. Shah

Measuring gene expression of genomically defined tumour clones at single cell resolution would associate functional consequences to somatic alterations, as a prelude to elucidating pathways driving cell population growth, resistance and relapse. In the absence of scalable methods to simultaneously assay DNA and RNA from the same single cell, independent sampling of cell populations for parallel measurement of single cell DNA and single cell RNA must be computationally mapped for genome-transcriptome association. Here we present clonealign, a robust statistical framework to assign gene expression states to cancer clones using single-cell RNA-seq and DNA-seq independently sampled from an heterogeneous cancer cell population. We apply clonealign to triple-negative breast cancer patient derived xenografts and high-grade serous ovarian cancer cell lines and discover clone-specific dysregulated biological pathways not visible using either DNA-Seq or RNA-Seq alone.

Collaboration


Dive into the Daniel Lai's collaboration.

Top Co-Authors

Avatar

Ali Bashashati

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco A. Marra

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Samuel Aparicio

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karey Shumansky

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Martin Hirst

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge