Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel M. Wolpert is active.

Publication


Featured researches published by Daniel M. Wolpert.


Nature | 1998

Signal-dependent noise determines motor planning

Christopher M. Harris; Daniel M. Wolpert

When we make saccadic eye movements or goal-directed arm movements, there is an infinite number of possible trajectories that the eye or arm could take to reach the target,. However, humans show highly stereotyped trajectories in which velocity profiles of both the eye and hand are smooth and symmetric for brief movements,. Here we present a unifying theory of eye and arm movements based on the single physiological assumption that the neural control signals are corrupted by noise whose variance increases with the size of the control signal. We propose that in the presence of such signal-dependent noise, the shape of a trajectory is selected to minimize the variance of the final eye or arm position. This minimum-variance theory accurately predicts the trajectories of both saccades and arm movements and the speed–accuracy trade-off described by Fitts law. These profiles are robust to changes in the dynamics of the eye or arm, as found empirically,. Moreover, the relation between path curvature and hand velocity during drawing movements reproduces the empirical ‘two-thirds power law’,. This theory provides a simple and powerful unifying perspective for both eye and arm movement control.


Neural Networks | 1998

Multiple paired forward and inverse models for motor control

Daniel M. Wolpert; Mitsuo Kawato

Humans demonstrate a remarkable ability to generate accurate and appropriate motor behavior under many different and often uncertain environmental conditions. In this paper, we propose a modular approach to such motor learning and control. We review the behavioral evidence and benefits of modularity, and propose a new architecture based on multiple pairs of inverse (controller) and forward (predictor) models. Within each pair, the inverse and forward models are tightly coupled both during their acquisition, through motor learning, and use, during which the forward models determine the contribution of each inverse models output to the final motor command. This architecture can simultaneously learn the multiple inverse models necessary for control as well as how to select the inverse models appropriate for a given environment. Finally, we describe specific predictions of the model, which can be tested experimentally.


Trends in Cognitive Sciences | 1998

Internal models in the cerebellum

Daniel M. Wolpert; R.Chris Miall; Mitsuo Kawato

This review will focus on the possibility that the cerebellum contains an internal model or models of the motor apparatus. Inverse internal models can provide the neural command necessary to achieve some desired trajectory. First, we review the necessity of such a model and the evidence, based on the ocular following response, that inverse models are found within the cerebellar circuitry. Forward internal models predict the consequences of actions and can be used to overcome time delays associated with feedback control. Secondly, we review the evidence that the cerebellum generates predictions using such a forward model. Finally, we review a computational model that includes multiple paired forward and inverse models and show how such an arrangement can be advantageous for motor learning and control.


Nature Neuroscience | 2000

Computational principles of movement neuroscience

Daniel M. Wolpert; Zoubin Ghahramani

Unifying principles of movement have emerged from the computational study of motor control. We review several of these principles and show how they apply to processes such as motor planning, control, estimation, prediction and learning. Our goal is to demonstrate how specific models emerging from the computational approach provide a theoretical framework for movement neuroscience.


Nature Reviews Neuroscience | 2008

Noise in the nervous system.

A. Aldo Faisal; Luc P. J. Selen; Daniel M. Wolpert

Noise — random disturbances of signals — poses a fundamental problem for information processing and affects all aspects of nervous-system function. However, the nature, amount and impact of noise in the nervous system have only recently been addressed in a quantitative manner. Experimental and computational methods have shown that multiple noise sources contribute to cellular and behavioural trial-to-trial variability. We review the sources of noise in the nervous system, from the molecular to the behavioural level, and show how noise contributes to trial-to-trial variability. We highlight how noise affects neuronal networks and the principles the nervous system applies to counter detrimental effects of noise, and briefly discuss noises potential benefits.


Nature | 2004

Bayesian integration in sensorimotor learning

Konrad P. Körding; Daniel M. Wolpert

When we learn a new motor skill, such as playing an approaching tennis ball, both our sensors and the task possess variability. Our sensors provide imperfect information about the balls velocity, so we can only estimate it. Combining information from multiple modalities can reduce the error in this estimate. On a longer time scale, not all velocities are a priori equally probable, and over the course of a match there will be a probability distribution of velocities. According to bayesian theory, an optimal estimate results from combining information about the distribution of velocities—the prior—with evidence from sensory feedback. As uncertainty increases, when playing in fog or at dusk, the system should increasingly rely on prior knowledge. To use a bayesian strategy, the brain would need to represent the prior distribution and the level of uncertainty in the sensory feedback. Here we control the statistical variations of a new sensorimotor task and manipulate the uncertainty of the sensory feedback. We show that subjects internally represent both the statistical distribution of the task and their sensory uncertainty, combining them in a manner consistent with a performance-optimizing bayesian process. The central nervous system therefore employs probabilistic models during sensorimotor learning.


Journal of Motor Behavior | 1993

Is the Cerebellum a Smith Predictor

R. C. Miall; D.J. Weir; Daniel M. Wolpert; John F. Stein

The motor system may use internal predictive models of the motor apparatus to achieve better control than would be possible by negative feedback. Several theories have proposed that the cerebellum may form these predictive representations. In this article, we review these theories and try to unify them by reference to an engineering control model known as a Smith Predictor. We suggest that the cerebellum forms two types of internal model. One model is a forward predictive model of the motor apparatus (e.g., limb and muscle), providing a rapid prediction of the sensory consequences of each movement. The second model is of the time delays in the control loop (due to receptor and effector delays, axonal conductances, and cognitive processing delays). This model delays a copy of the rapid prediction so that it can be compared in temporal register with actual sensory feedback from the movement. The result of this comparison is used both to correct for errors in performance and as a training signal to learn the first model. We discuss evidence that the cerebellum could form both of these models and suggest that the cerebellum may hold at least two separate Smith Predictors. One, in the lateral cerebellum, would predict the movement outcome in visual, egocentric, or peripersonal coordinates. Another, in the intermediate cerebellum, would predict the consequences in motor coordinates. Generalization of the Smith Predictor theory is discussed in light of cerebellar involvement in nonmotor control systems, including autonomic functions and cognition.


Nature Neuroscience | 1998

Central cancellation of self-produced tickle sensation

Sarah-J. Blakemore; Daniel M. Wolpert; Chris Frith

A self-produced tactile stimulus is perceived as less ticklish than the same stimulus generated externally. We used fMRI to examine neural responses when subjects experienced a tactile stimulus that was either self-produced or externally produced. More activity was found in somatosensory cortex when the stimulus was externally produced. In the cerebellum, less activity was associated with a movement that generated a tactile stimulus than with a movement that did not. This difference suggests that the cerebellum is involved in predicting the specific sensory consequences of movements, providing the signal that is used to cancel the sensory response to self-generated stimulation.


Trends in Cognitive Sciences | 1997

Computational approaches to motor control

Daniel M. Wolpert

This review will focus on four areas of motor control which have recently been enriched both by neural network and control system models: motor planning, motor prediction, state estimation and motor learning. We will review the computational foundations of each of these concepts and present specific models which have been tested by psychophysical experiments. We will cover the topics of optimal control for motor planning, forward models for motor prediction, observer models of state estimation arid modular decomposition in motor learning. The aim of this review is to demonstrate how computational approaches, as well as proposing specific models, provide a theoretical framework to formalize the issues in motor control.


Neural Computation | 2001

MOSAIC Model for Sensorimotor Learning and Control

Masahiko Haruno; Daniel M. Wolpert; Mitsuo Kawato

Humans demonstrate a remarkable ability to generate accurate and appropriate motor behavior under many different and often uncertain environmental conditions. We previously proposed a new modular architecture, the modular selection and identification for control (MOSAIC) model, for motor learning and control based on multiple pairs of forward (predictor) and inverse (controller) models. The architecture simultaneously learns the multiple inverse models necessary for control as well as how to select the set of inverse models appropriate for a given environment. It combines both feedforward and feedback sensorimotor information so that the controllers can be selected both prior to movement and subsequently during movement. This article extends and evaluates the MOSAIC architecture in the following respects. The learning in the architecture was implemented by both the original gradient-descent method and the expectation-maximization (EM) algorithm. Unlike gradient descent, the newly derived EM algorithm is robust to the initial starting conditions and learning parameters. Second, simulations of an object manipulation task prove that the architecture can learn to manipulate multiple objects and switch between them appropriately. Moreover, after learning, the model shows generalization to novel objects whose dynamics lie within the polyhedra of already learned dynamics. Finally, when each of the dynamics is associated with a particular object shape, the model is able to select the appropriate controller before movement execution. When presented with a novel shape-dynamic pairing, inappropriate activation of modules is observed followed by on-line correction.

Collaboration


Dive into the Daniel M. Wolpert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Frith

Wellcome Trust Centre for Neuroimaging

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul M. Bays

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Haggard

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge