Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James N. Ingram is active.

Publication


Featured researches published by James N. Ingram.


Nature Neuroscience | 2006

Sensorimotor attenuation by central motor command signals in the absence of movement

Martin Voss; James N. Ingram; Patrick Haggard; Daniel M. Wolpert

Voluntary actions typically produce suppression of afferent sensation from the moving body part. We used transcranial magnetic stimulation to delay the output of motor commands from the motor cortex during voluntary movement. We show attenuation of sensation during this delay, in the absence of movement. We conclude that sensory suppression mainly relies on central signals related to the preparation for movement and that these signals are upstream of primary motor cortex.


Experimental Brain Research | 2008

The statistics of natural hand movements

James N. Ingram; Konrad P. Körding; Ian S. Howard; Daniel M. Wolpert

Humans constantly use their hands to interact with the environment and they engage spontaneously in a wide variety of manual activities during everyday life. In contrast, laboratory-based studies of hand function have used a limited range of predefined tasks. The natural movements made by the hand during everyday life have thus received little attention. Here, we developed a portable recording device that can be worn by subjects to track movements of their right hand as they go about their daily routine outside of a laboratory setting. We analyse the kinematic data using various statistical methods. Principal component analysis of the joint angular velocities showed that the first two components were highly conserved across subjects, explained 60% of the variance and were qualitatively similar to those reported in previous studies of reach-to-grasp movements. To examine the independence of the digits, we developed a measure based on the degree to which the movements of each digit could be linearly predicted from the movements of the other four digits. Our independence measure was highly correlated with results from previous studies of the hand, including the estimated size of the digit representations in primary motor cortex and other laboratory measures of digit individuation. Specifically, the thumb was found to be the most independent of the digits and the index finger was the most independent of the fingers. These results support and extend laboratory-based studies of the human hand.


Journal of Neuroscience Methods | 2009

A modular planar robotic manipulandum with end-point torque control

Ian S. Howard; James N. Ingram; Daniel M. Wolpert

Robotic manipulanda are extensively used in investigation of the motor control of human arm movements. They permit the application of translational forces to the arm based on its state and can be used to probe issues ranging from mechanisms of neural control to biomechanics. However, most current designs are optimized for studying either motor learning or stiffness. Even fewer include end-point torque control which is important for the simulation of objects and the study of tool use. Here we describe a modular, general purpose, two-dimensional planar manipulandum (vBOT) primarily optimized for dynamic learning paradigms. It employs a carbon fibre arm arranged as a parallelogram which is driven by motors via timing pulleys. The design minimizes the intrinsic dynamics of the manipulandum without active compensation. A novel variant of the design (WristBOT) can apply torques at the handle using an add-on cable drive mechanism. In a second variant (StiffBOT) a more rigid arm can be substituted and zero backlash belts can be used, making the StiffBOT more suitable for the study of stiffness. The three variants can be used with custom built display rigs, mounting, and air tables. We investigated the performance of the vBOT and its variants in terms of effective end-point mass, viscosity and stiffness. Finally we present an object manipulation task using the WristBOT. This demonstrates that subjects can perceive the orientation of the principal axis of an object based on haptic feedback arising from its rotational dynamics.


PLOS ONE | 2008

Mere expectation to move causes attenuation of sensory signals

Martin Voss; James N. Ingram; Daniel M. Wolpert; Patrick Haggard

When a part of the body moves, the sensation evoked by a probe stimulus to that body part is attenuated. Two mechanisms have been proposed to explain this robust and general effect. First, feedforward motor signals may modulate activity evoked by incoming sensory signals. Second, reafferent sensation from body movements may mask the stimulus. Here we delivered probe stimuli to the right index finger just before a cue which instructed subjects to make left or right index finger movements. When left and right cues were equiprobable, we found attenuation for stimuli to the right index finger just before this finger was cued (and subsequently moved). However, there was no attenuation in the right finger just before the left finger was cued. This result suggests that the movement made in response to the cue caused ‘postdictive’ attenuation of a sensation occurring prior to the cue. In a second experiment, the right cue was more frequent than the left. We now found attenuation in the right index finger even when the left finger was cued and moved. This attenuation linked to a movement that was likely but did not in fact occur, suggests a new expectation-based mechanism, distinct from both feedforward motor signals and postdiction. Our results suggest a new mechanism in motor-sensory interactions in which the motor system tunes the sensory inputs based on expectations about future possible actions that may not, in fact, be implemented.


PLOS Biology | 2004

A Neuroeconomics Approach to Inferring Utility Functions in Sensorimotor Control

Konrad P. Körding; Izumi Fukunaga; Ian S. Howard; James N. Ingram; Daniel M. Wolpert

Making choices is a fundamental aspect of human life. For over a century experimental economists have characterized the decisions people make based on the concept of a utility function. This function increases with increasing desirability of the outcome, and people are assumed to make decisions so as to maximize utility. When utility depends on several variables, indifference curves arise that represent outcomes with identical utility that are therefore equally desirable. Whereas in economics utility is studied in terms of goods and services, the sensorimotor system may also have utility functions defining the desirability of various outcomes. Here, we investigate the indifference curves when subjects experience forces of varying magnitude and duration. Using a two-alternative forced-choice paradigm, in which subjects chose between different magnitude–duration profiles, we inferred the indifference curves and the utility function. Such a utility function defines, for example, whether subjects prefer to lift a 4-kg weight for 30 s or a 1-kg weight for a minute. The measured utility function depends nonlinearly on the force magnitude and duration and was remarkably conserved across subjects. This suggests that the utility function, a central concept in economics, may be applicable to the study of sensorimotor control.


Current Biology | 2010

Multiple Grasp-Specific Representations of Tool Dynamics Mediate Skillful Manipulation

James N. Ingram; Ian S. Howard; J. Randall Flanagan; Daniel M. Wolpert

Summary Skillful tool use requires knowledge of the dynamic properties of tools in order to specify the mapping between applied force and tool motion [1–3]. Importantly, this mapping depends on the orientation of the tool in the hand. Here we investigate the representation of dynamics during skillful manipulation of a tool that can be grasped at different orientations. We ask whether the motor system uses a single general representation of dynamics for all grasp contexts or whether it uses multiple grasp-specific representations. Using a novel robotic interface [4], subjects rotated a virtual tool whose orientation relative to the hand could be varied. Subjects could immediately anticipate the force direction for each orientation of the tool based on its visual geometry, and, with experience, they learned to parameterize the force magnitude. Surprisingly, this parameterization of force magnitude showed limited generalization when the orientation of the tool changed. Had subjects parameterized a single general representation, full generalization would be expected. Thus, our results suggest that object dynamics are captured by multiple representations, each of which encodes the mapping associated with a specific grasp context. We suggest that the concept of grasp-specific representations may provide a unifying framework for interpreting previous results related to dynamics learning.


The Journal of Neuroscience | 2012

Gone in 0.6 Seconds: The Encoding of Motor Memories Depends on Recent Sensorimotor States

Ian S. Howard; James N. Ingram; David W. Franklin; Daniel M. Wolpert

Real-world tasks often require movements that depend on a previous action or on changes in the state of the world. Here we investigate whether motor memories encode the current action in a manner that depends on previous sensorimotor states. Human subjects performed trials in which they made movements in a randomly selected clockwise or counterclockwise velocity-dependent curl force field. Movements during this adaptation phase were preceded by a contextual phase that determined which of the two fields would be experienced on any given trial. As expected from previous research, when static visual cues were presented in the contextual phase, strong interference (resulting in an inability to learn either field) was observed. In contrast, when the contextual phase involved subjects making a movement that was continuous with the adaptation-phase movement, a substantial reduction in interference was seen. As the time between the contextual and adaptation movement increased, so did the interference, reaching a level similar to that seen for static visual cues for delays >600 ms. This contextual effect generalized to purely visual motion, active movement without vision, passive movement, and isometric force generation. Our results show that sensorimotor states that differ in their recent temporal history can engage distinct representations in motor memory, but this effect decays progressively over time and is abolished by ∼600 ms. This suggests that motor memories are encoded not simply as a mapping from current state to motor command but are encoded in terms of the recent history of sensorimotor states.


Journal of Neurophysiology | 2011

Separate representations of dynamics in rhythmic and discrete movements: evidence from motor learning

Ian S. Howard; James N. Ingram; Daniel M. Wolpert

Rhythmic and discrete arm movements occur ubiquitously in everyday life, and there is a debate as to whether these two classes of movements arise from the same or different underlying neural mechanisms. Here we examine interference in a motor-learning paradigm to test whether rhythmic and discrete movements employ at least partially separate neural representations. Subjects were required to make circular movements of their right hand while they were exposed to a velocity-dependent force field that perturbed the circularity of the movement path. The direction of the force-field perturbation reversed at the end of each block of 20 revolutions. When subjects made only rhythmic or only discrete circular movements, interference was observed when switching between the two opposing force fields. However, when subjects alternated between blocks of rhythmic and discrete movements, such that each was uniquely associated with one of the perturbation directions, interference was significantly reduced. Only in this case did subjects learn to corepresent the two opposing perturbations, suggesting that different neural resources were employed for the two movement types. Our results provide further evidence that rhythmic and discrete movements employ at least partially separate control mechanisms in the motor system.


Journal of Neurophysiology | 2010

Context-Dependent Partitioning of Motor Learning in Bimanual Movements

Ian S. Howard; James N. Ingram; Daniel M. Wolpert

Human subjects easily adapt to single dynamic or visuomotor perturbations. In contrast, when two opposing dynamic or visuomotor perturbations are presented sequentially, interference is often observed. We examined the effect of bimanual movement context on interference between opposing perturbations using pairs of contexts, in which the relative direction of movement between the two arms was different across the pair. When each perturbation direction was associated with a different bimanual context, such as movement of the arms in the same direction versus movement in the opposite direction, interference was dramatically reduced. This occurred over a short period of training and was seen for both dynamic and visuomotor perturbations, suggesting a partitioning of motor learning for the different bimanual contexts. Further support for this was found in a series of transfer experiments. Having learned a single dynamic or visuomotor perturbation in one bimanual context, subjects showed incomplete transfer of this learning when the context changed, even though the perturbation remained the same. In addition, we examined a bimanual context in which one arm was moved passively and show that the reduction in interference requires active movement. The sensory consequences of movement are thus insufficient to allow opposing perturbations to be co-represented. Our results suggest different bimanual movement contexts engage at least partially separate representations of dynamics and kinematics in the motor system.


Neuropsychologia | 2010

Deficits in sensory prediction are related to delusional ideation in healthy individuals

Christoph Teufel; Arjun Kingdon; James N. Ingram; Daniel M. Wolpert; P. C. Fletcher

Research highlights ▶ Levels of sensory-motor predictions vary gradually in the healthy population. ▶ Deficient predictions are related to a delusion-like style of thinking. ▶ The continuum between health and psychosis exists even on a sensory-motor level.

Collaboration


Dive into the James N. Ingram's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Noham Wolpe

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Haggard

University College London

View shared research outputs
Top Co-Authors

Avatar

Richard N. Henson

Cognition and Brain Sciences Unit

View shared research outputs
Researchain Logo
Decentralizing Knowledge