Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel P. Grosvenor is active.

Publication


Featured researches published by Daniel P. Grosvenor.


Journal of Geophysical Research | 2015

Mixed‐phase cloud physics and Southern Ocean cloud feedback in climate models

Daniel T. McCoy; Dennis L. Hartmann; Mark D. Zelinka; Paulo Ceppi; Daniel P. Grosvenor

Increasing optical depth poleward of 45° is a robust response to warming in global climate models. Much of this cloud optical depth increase has been hypothesized to be due to transitions from ice-dominated to liquid-dominated mixed-phase cloud. In this study, the importance of liquid-ice partitioning for the optical depth feedback is quantified for 19 Coupled Model Intercomparison Project Phase 5 models. All models show a monotonic partitioning of ice and liquid as a function of temperature, but the temperature at which ice and liquid are equally mixed (the glaciation temperature) varies by as much as 40 K across models. Models that have a higher glaciation temperature are found to have a smaller climatological liquid water path (LWP) and condensed water path and experience a larger increase in LWP as the climate warms. The ice-liquid partitioning curve of each model may be used to calculate the response of LWP to warming. It is found that the repartitioning between ice and liquid in a warming climate contributes at least 20% to 80% of the increase in LWP as the climate warms, depending on model. Intermodel differences in the climatological partitioning between ice and liquid are estimated to contribute at least 20% to the intermodel spread in the high-latitude LWP response in the mixed-phase region poleward of 45°S. It is hypothesized that a more thorough evaluation and constraint of global climate model mixed-phase cloud parameterizations and validation of the total condensate and ice-liquid apportionment against observations will yield a substantial reduction in model uncertainty in the high-latitude cloud response to warming.


Science Advances | 2015

Natural aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo

Daniel T. McCoy; Susannah M. Burrows; Robert Wood; Daniel P. Grosvenor; Scott Elliott; Po-Lun Ma; P. J. Rasch; Dennis L. Hartmann

Sulfate and organic mass in sea spray explain more than half of the variability in Southern Ocean cloud droplet concentration. Atmospheric aerosols, suspended solid and liquid particles, act as nucleation sites for cloud drop formation, affecting clouds and cloud properties—ultimately influencing the cloud dynamics, lifetime, water path, and areal extent that determine the reflectivity (albedo) of clouds. The concentration Nd of droplets in clouds that influences planetary albedo is sensitive to the availability of aerosol particles on which the droplets form. Natural aerosol concentrations affect not only cloud properties themselves but also modulate the sensitivity of clouds to changes in anthropogenic aerosols. It is shown that modeled natural aerosols, principally marine biogenic primary and secondary aerosol sources, explain more than half of the spatiotemporal variability in satellite-observed Nd. Enhanced Nd is spatially correlated with regions of high chlorophyll a, and the spatiotemporal variability in Nd is found to be driven primarily by high concentrations of sulfate aerosol at lower Southern Ocean latitudes (35o to 45oS) and by organic matter in sea spray aerosol at higher latitudes (45o to 55oS). Biogenic sources are estimated to increase the summertime mean reflected solar radiation in excess of 10 W m–2 over parts of the Southern Ocean, which is comparable to the annual mean increases expected from anthropogenic aerosols over heavily polluted regions of the Northern Hemisphere.


Nature | 2017

Strong Constraints on Aerosol-Cloud Interactions from Volcanic Eruptions

Florent F. Malavelle; James M. Haywood; Andrew K. Jones; Andrew Gettelman; Lieven Clarisse; Sophie Bauduin; Richard P. Allan; Inger Helene H. Karset; Jón Egill Kristjánsson; Lazaros Oreopoulos; Nayeong Cho; Dongmin Lee; Nicolas Bellouin; Olivier Boucher; Daniel P. Grosvenor; Kenneth S. Carslaw; S. Dhomse; G. W. Mann; Anja Schmidt; Hugh Coe; Margaret E. Hartley; Mohit Dalvi; Adrian Hill; Ben Johnson; Colin E. Johnson; Jeff R. Knight; Fiona M. O’Connor; Daniel G. Partridge; P. Stier; Gunnar Myhre

Aerosols have a potentially large effect on climate, particularly through their interactions with clouds, but the magnitude of this effect is highly uncertain. Large volcanic eruptions produce sulfur dioxide, which in turn produces aerosols; these eruptions thus represent a natural experiment through which to quantify aerosol–cloud interactions. Here we show that the massive 2014–2015 fissure eruption in Holuhraun, Iceland, reduced the size of liquid cloud droplets—consistent with expectations—but had no discernible effect on other cloud properties. The reduction in droplet size led to cloud brightening and global-mean radiative forcing of around −0.2 watts per square metre for September to October 2014. Changes in cloud amount or cloud liquid water path, however, were undetectable, indicating that these indirect effects, and cloud systems in general, are well buffered against aerosol changes. This result will reduce uncertainties in future climate projections, because we are now able to reject results from climate models with an excessive liquid-water-path response.&NA; Aerosols have a potentially large effect on climate, particularly through their interactions with clouds, but the magnitude of this effect is highly uncertain. Large volcanic eruptions produce sulfur dioxide, which in turn produces aerosols; these eruptions thus represent a natural experiment through which to quantify aerosol‐cloud interactions. Here we show that the massive 2014‐2015 fissure eruption in Holuhraun, Iceland, reduced the size of liquid cloud droplets—consistent with expectations—but had no discernible effect on other cloud properties. The reduction in droplet size led to cloud brightening and global‐mean radiative forcing of around −0.2 watts per square metre for September to October 2014. Changes in cloud amount or cloud liquid water path, however, were undetectable, indicating that these indirect effects, and cloud systems in general, are well buffered against aerosol changes. This result will reduce uncertainties in future climate projections, because we are now able to reject results from climate models with an excessive liquid‐water‐path response. Investigations of an Icelandic volcanic eruption confirm that sulfate aerosols caused a discernible yet transient brightening effect, as predicted, but their effect on the liquid water path was unexpectedly negligible.


Journal of Climate | 2014

Observed Southern Ocean Cloud Properties and Shortwave Reflection. Part I: Calculation of SW Flux from Observed Cloud Properties*

Daniel T. McCoy; Dennis L. Hartmann; Daniel P. Grosvenor

AbstractThe sensitivity of the reflection of shortwave radiation over the Southern Ocean to the cloud properties there is estimated using observations from a suite of passive and active satellite instruments in combination with radiative transfer modeling. A composite cloud property observational data description is constructed that consistently incorporates mean cloud liquid water content, ice water content, liquid and ice particle radius information, vertical structure, vertical overlap, and spatial aggregation of cloud water as measured by optical depth versus cloud-top pressure histograms. The observational datasets used are Moderate Resolution Imaging Spectroradiometer (MODIS) effective radius filtered to mitigate solar zenith angle bias, the Multiangle Imaging Spectroradiometer (MISR) cloud-top height–optical depth (CTH–OD) histogram, the liquid water path from the University of Wisconsin dataset, and ice cloud properties from CloudSat. This cloud database is used to compute reflected shortwave radi...


Tellus B | 2013

Long-term measurements of cloud droplet concentrations and aerosol–cloud interactions in continental boundary layer clouds

Irshad Ahmad; T. Mielonen; Daniel P. Grosvenor; H. Portin; Antti Arola; Santtu Mikkonen; Thomas Kühn; Ari Leskinen; Jorma Juotsensaari; M. Komppula; K. E. J. Lehtinen; Ari Laaksonen; S. Romakkaniemi

The effects of aerosol on cloud droplet effective radius (R eff), cloud optical thickness and cloud droplet number concentration (N d) are analysed both from long-term direct ground-based in situ measurements conducted at the Puijo measurement station in Eastern Finland and from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument onboard the Terra and Aqua satellites. The mean in situ N d during the period of study was 217 cm−3, while the MODIS-based N d was 171 cm−3. The absolute values, and the dependence of both N d observations on the measured aerosol number concentration in the accumulation mode (N acc), are quite similar. In both data sets N d is clearly dependent on N acc, for N acc values lower than approximately 450 cm−3. Also, the values of the aerosol–cloud-interaction parameter [ACI=(1/3)*d ln(N d)/d ln(N acc)] are quite similar for N acc<400 cm−3 with values of 0.16 and 0.14 from in situ and MODIS measurements, respectively. With higher N acc (>450 cm−3) N d increases only slowly. Similarly, the effect of aerosol on MODIS-retrieved R eff is visible only at low N acc values. In a sub set of data, the cloud and aerosol properties were measured simultaneously. For that data the comparison between MODIS-derived N d and directly measured N d, or the cloud droplet number concentration estimated from N acc values (N d,p), shows a correlation, which is greatly improved after careful screening using a ceilometer to make sure that only single cloud layers existed. This suggests that such determination of the number of cloud layers is very important when trying to match ground-based measurements to MODIS measurements.


Journal of Geophysical Research | 2017

The global aerosol-cloud first indirect effect estimated using MODIS, MERRA, and AeroCom

Daniel T. McCoy; Frida A.-M. Bender; Johannes Mohrmann; Dennis L. Hartmann; Robert Wood; Daniel P. Grosvenor

Aerosol-cloud interactions (ACI) represent a significant source of forcing uncertainty in global climate models (GCMs). Estimates of radiative forcing due to ACI in Fifth Assessment Report range fr ...


Proceedings of the National Academy of Sciences of the United States of America | 2018

Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles

Jesús Vergara-Temprado; Annette K. Miltenberger; Kalli Furtado; Daniel P. Grosvenor; Ben Shipway; Adrian Hill; Jonathan M. Wilkinson; P. R. Field; Benjamin J. Murray; Kenneth S. Carslaw

Significance Simulated clouds over the Southern Ocean reflect too little solar radiation compared with observations, which results in errors in simulated surface temperatures and in many other important features of the climate system. Our results show that the radiative properties of the most biased types of clouds in cyclonic systems are highly sensitive to the concentration of ice-nucleating particles. The uniquely low concentrations of ice-nucleating particles in this remote marine environment strongly inhibit precipitation and allow much brighter clouds to be sustained. Large biases in climate model simulations of cloud radiative properties over the Southern Ocean cause large errors in modeled sea surface temperatures, atmospheric circulation, and climate sensitivity. Here, we combine cloud-resolving model simulations with estimates of the concentration of ice-nucleating particles in this region to show that our simulated Southern Ocean clouds reflect far more radiation than predicted by global models, in agreement with satellite observations. Specifically, we show that the clouds that are most sensitive to the concentration of ice-nucleating particles are low-level mixed-phase clouds in the cold sectors of extratropical cyclones, which have previously been identified as a main contributor to the Southern Ocean radiation bias. The very low ice-nucleating particle concentrations that prevail over the Southern Ocean strongly suppress cloud droplet freezing, reduce precipitation, and enhance cloud reflectivity. The results help explain why a strong radiation bias occurs mainly in this remote region away from major sources of ice-nucleating particles. The results present a substantial challenge to climate models to be able to simulate realistic ice-nucleating particle concentrations and their effects under specific meteorological conditions.


Reviews of Geophysics | 2018

Remote Sensing of Droplet Number Concentration in Warm Clouds: A Review of the Current State of Knowledge and Perspectives

Daniel P. Grosvenor; Odran Sourdeval; Paquita Zuidema; Andrew S. Ackerman; Mikhail D. Alexandrov; Ralf Bennartz; R. Boers; Brian Cairns; J. Christine Chiu; Matthew W. Christensen; Hartwig Deneke; Michael S. Diamond; Graham Feingold; Ann M. Fridlind; Anja Hünerbein; Christine Knist; Pavlos Kollias; Alexander Marshak; Daniel T. McCoy; Daniel Merk; David Painemal; John Rausch; Daniel Rosenfeld; H.W.J. Russchenberg; Patric Seifert; Kenneth Sinclair; P. Stier; Bastiaan van Diedenhoven; Manfred Wendisch; Frank Werner

Abstract The cloud droplet number concentration (N d) is of central interest to improve the understanding of cloud physics and for quantifying the effective radiative forcing by aerosol‐cloud interactions. Current standard satellite retrievals do not operationally provide N d, but it can be inferred from retrievals of cloud optical depth (τ c) cloud droplet effective radius (r e) and cloud top temperature. This review summarizes issues with this approach and quantifies uncertainties. A total relative uncertainty of 78% is inferred for pixel‐level retrievals for relatively homogeneous, optically thick and unobscured stratiform clouds with favorable viewing geometry. The uncertainty is even greater if these conditions are not met. For averages over 1° ×1° regions the uncertainty is reduced to 54% assuming random errors for instrument uncertainties. In contrast, the few evaluation studies against reference in situ observations suggest much better accuracy with little variability in the bias. More such studies are required for a better error characterization. N d uncertainty is dominated by errors in r e, and therefore, improvements in r e retrievals would greatly improve the quality of the N d retrievals. Recommendations are made for how this might be achieved. Some existing N d data sets are compared and discussed, and best practices for the use of N d data from current passive instruments (e.g., filtering criteria) are recommended. Emerging alternative N d estimates are also considered. First, new ideas to use additional information from existing and upcoming spaceborne instruments are discussed, and second, approaches using high‐quality ground‐based observations are examined.


Climate Dynamics | 2018

Assessment of aerosol–cloud–radiation correlations in satellite observations, climate models and reanalysis

Frida A.-M. Bender; L. Frey; Daniel T. McCoy; Daniel P. Grosvenor; Johannes Mohrmann

Representing large-scale co-variability between variables related to aerosols, clouds and radiation is one of many aspects of agreement with observations desirable for a climate model. In this study such relations are investigated in terms of temporal correlations on monthly mean scale, to identify points of agreement and disagreement with observations. Ten regions with different meteorological characteristics and aerosol signatures are studied and correlation matrices for the selected regions offer an overview of model ability to represent present day climate variability. Global climate models with different levels of detail and sophistication in their representation of aerosols and clouds are compared with satellite observations and reanalysis assimilating meteorological fields as well as aerosol optical depth from observations. One example of how the correlation comparison can guide model evaluation and development is the often studied relation between cloud droplet number and water content. Reanalysis, with no parameterized aerosol–cloud coupling, shows weaker correlations than observations, indicating that microphysical couplings between cloud droplet number and water content are not negligible for the co-variations emerging on larger scale. These observed correlations are, however, not in agreement with those expected from dominance of the underlying microphysical aerosol–cloud couplings. For instance, negative correlations in subtropical stratocumulus regions show that suppression of precipitation and subsequent increase in water content due to aerosol is not a dominating process on this scale. Only in one of the studied models are cloud dynamics able to overcome the parameterized dependence of rain formation on droplet number concentration, and negative correlations in the stratocumulus regions are reproduced.


Atmospheric Chemistry and Physics | 2018

Large simulated radiative effects of smoke in the south-east Atlantic

H. Gordon; P. R. Field; Steven J. Abel; Ben Johnson; Mohit Dalvi; Daniel P. Grosvenor; Adrian Hill; Annette K. Miltenberger; Masaru Yoshioka; Kenneth S. Carslaw

A 1200 km-square area of the tropical south Atlantic Ocean near Ascension Island is studied with the HadGEM climate model at convection-permitting and global resolutions for a ten-day case study period in August 2016. During the simulation period, a plume of biomass burning smoke from Africa moves into the area and mixes into the clouds. At Ascension Island, this smoke episode was the strongest of the 2016 fire season. We examine the interaction of the smoke with clouds and find it has substantial instantaneous direct, indirect and semi-direct radiative effects, which vary in magnitude between model 5 configurations. The region of interest is simulated at 4 km resolution, with no parameterised convection scheme. The simulations are driven by, and compared to, the HadGEM global model, running at approximately 65 km resolution. For the first time, the UK Chemistry and Aerosol model UKCA is included in a regional model with prognostic aerosol number concentrations advecting in from the global model at the boundaries of the region. 10 The smoke aerosol is simulated realistically, and is found to affect dynamical, microphysical and radiative properties of the atmosphere across the region. The model captures the large-scale horizontal transport of the aerosol adequately, approximately reproducing a transition from pristine to polluted conditions. However, for some of the simulation, the smoke is around 1km too low in altitude and therefore, although the smoke mixes into the clouds earlier than observed. Fire emissions increase the total aerosol burden by a factor 3.7 and cloud droplet number concentrations by a factor of 3, which is consistent with MODIS 15 observations. Strong localised perturbations to heating and cooling rates due to the smoke affect the dynamics: iIn the regional model, the inversion height is reduced by up to 200 m when smoke is included. The smoke also affects precipitation, to an extent which depends on the model microphysics. The microphysical and dynamical changes lead to an increase in liquid water path of 60g m−2 relative to a simulation without smoke aerosol, when averaged over the polluted period. This increase is uncertain, and smaller in the global model. It is mostly due to radiatively driven dynamical changes: the reduced entrainment 20 of dry air from above the cloud layer, rather than precipitation suppression by aerosol. Over the 5-day polluted period, the smoke has substantial direct radiative effects of +11.4W m−2 in the regional model, when averaged over the polluted five days of our case study. The, a semi-direct radiative effect of the smoke,a semi-direct effect of −30.5W m−2, and an indirect effect of −10.1W m−2. Our results show that However, the radiative effects are sensitive tothe structure of the model (global versus regional) and the parameterization of rain autoconversion.are sensitive to the model 25 set-up: the semi-direct effect is smaller in the global model, and also in a simulation with the Kogan (2013) parameterisation of autoconversion and accretion instead of the default, from Khairoutdinov & Kogan (2002). Furthermore, we simulate a liquid water path that is biased high compared to satellite observations by 22% on average, and this leads to high estimates of the domain-averaged aerosol direct effect and the effect of the aerosol on cloud albedo. With these caveats, we simulate a large net cooling across the region, of −27.6W m−2. 30

Collaboration


Dive into the Daniel P. Grosvenor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Wood

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anja Schmidt

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge