Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel S. Day is active.

Publication


Featured researches published by Daniel S. Day.


Nature Structural & Molecular Biology | 2011

An assessment of histone-modification antibody quality.

Thea A. Egelhofer; Aki Minoda; Sarit Klugman; Kyungjoon Lee; Paulina Kolasinska-Zwierz; Artyom A. Alekseyenko; Ming Sin Cheung; Daniel S. Day; Sarah Gadel; Andrey A. Gorchakov; Tingting Gu; Peter V. Kharchenko; Samantha Kuan; Isabel Latorre; Daniela Linder-Basso; Ying Luu; Queminh Ngo; M. Perry; Andreas Rechtsteiner; Nicole C. Riddle; Yuri B. Schwartz; Gregory Shanower; Anne Vielle; Julie Ahringer; Sarah C. R. Elgin; Mitzi I. Kuroda; Vincenzo Pirrotta; Bing Ren; Susan Strome; Peter J. Park

We have tested the specificity and utility of more than 200 antibodies raised against 57 different histone modifications in Drosophila melanogaster, Caenorhabditis elegans and human cells. Although most antibodies performed well, more than 25% failed specificity tests by dot blot or western blot. Among specific antibodies, more than 20% failed in chromatin immunoprecipitation experiments. We advise rigorous testing of histone-modification antibodies before use, and we provide a website for posting new test results (http://compbio.med.harvard.edu/antibodies/).


Nature | 2014

Comparative analysis of metazoan chromatin organization

Joshua W. K. Ho; Youngsook L. Jung; Tao Liu; Burak H. Alver; Soohyun Lee; Kohta Ikegami; Kyung Ah Sohn; Aki Minoda; Michael Y. Tolstorukov; Alex Appert; Stephen C. J. Parker; Tingting Gu; Anshul Kundaje; Nicole C. Riddle; Eric P. Bishop; Thea A. Egelhofer; Sheng'En Shawn Hu; Artyom A. Alekseyenko; Andreas Rechtsteiner; Dalal Asker; Jason A. Belsky; Sarah K. Bowman; Q. Brent Chen; Ron Chen; Daniel S. Day; Yan Dong; Andréa C. Dosé; Xikun Duan; Charles B. Epstein; Sevinc Ercan

Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms. Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal ‘arms’, and centromeres distributed along their lengths. To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function.


Cell | 2016

Insulated Neighborhoods: Structural and Functional Units of Mammalian Gene Control

Daniel S. Day; Richard A. Young

Understanding how transcriptional enhancers control over 20,000 protein-coding genes to maintain cell-type-specific gene expression programs in all human cells is a fundamental challenge in regulatory biology. Recent studies suggest that gene regulatory elements and their target genes generally occur within insulated neighborhoods, which are chromosomal loop structures formed by the interaction of two DNA sites bound by the CTCF protein and occupied by the cohesin complex. Here, we review evidence that insulated neighborhoods provide for specific enhancer-gene interactions, are essential for both normal gene activation and repression, form a chromosome scaffold that is largely preserved throughout development, and are perturbed by genetic and epigenetic factors in disease. Insulated neighborhoods are a powerful paradigm for gene control that provides new insights into development and disease.


Genome Biology | 2010

Estimating Enrichment of Repetitive Elements from High-throughput Sequence Data

Daniel S. Day; Lovelace J. Luquette; Peter J. Park; Peter V. Kharchenko

We describe computational methods for analysis of repetitive elements from short-read sequencing data, and apply them to study histone modifications associated with the repetitive elements in human and mouse cells. Our results demonstrate that while accurate enrichment estimates can be obtained for individual repeat types and small sets of repeat instances, there are distinct combinatorial patterns of chromatin marks associated with major annotated repeat families, including H3K27me3/H3K9me3 differences among the endogenous retroviral element classes.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Interrogating translational efficiency and lineage-specific transcriptomes using ribosome affinity purification

Pingzhu Zhou; Yijing Zhang; Qing Ma; Fei Gu; Daniel S. Day; Aibin He; Bin Zhou; Jing Li; Sean M. Stevens; Daniel Romo; William T. Pu

Significance We developed reagents and approaches to pull down ribosome-associated RNAs from Cre-labeled cells. We show that this strategy is useful to probe cell type-specific gene expression and the extent of transcript binding to ribosomes. Transcriptional profiling is a useful strategy to study development and disease. Approaches to isolate RNA from specific cell types, or from specific cellular compartments, would extend the power of this strategy. Previous work has shown that isolation of genetically tagged ribosomes (translating ribosome affinity purification; TRAP) is an effective means to isolate ribosome-bound RNA selectively from transgene-expressing cells. However, widespread application of this technology has been limited by available transgenic mouse lines. Here we characterize a TRAP allele (Rosa26fsTRAP) that makes this approach more widely accessible. We show that endothelium-specific activation of Rosa26fsTRAP identifies endothelial cell-enriched transcripts, and that cardiomyocyte-restricted TRAP is a useful means to identify genes that are differentially expressed in cardiomyocytes in a disease model. Furthermore, we show that TRAP is an effective means for studying translational regulation, and that several nuclear-encoded mitochondrial genes are under strong translational control. Our analysis of ribosome-bound transcripts also shows that a subset of long intergenic noncoding RNAs are weakly ribosome-bound, but that the majority of noncoding RNAs, including most long intergenic noncoding RNAs, are ribosome-bound to the same extent as coding transcripts. Together, these data show that the TRAP strategy and the Rosa26fsTRAP allele will be useful tools to probe cell type-specific transcriptomes, study translational regulation, and probe ribosome binding of noncoding RNAs.


Genome Research | 2013

A dynamic H3K27ac signature identifies VEGFA-stimulated endothelial enhancers and requires EP300 activity

Bing Zhang; Daniel S. Day; Joshua W. Ho; Lingyun Song; Jingjing Cao; Danos C. Christodoulou; Jonathan G. Seidman; Gregory E. Crawford; Peter J. Park; William T. Pu

Histone modifications are now well-established mediators of transcriptional programs that distinguish cell states. However, the kinetics of histone modification and their role in mediating rapid, signal-responsive gene expression changes has been little studied on a genome-wide scale. Vascular endothelial growth factor A (VEGFA), a major regulator of angiogenesis, triggers changes in transcriptional activity of human umbilical vein endothelial cells (HUVECs). Here, we used chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) to measure genome-wide changes in histone H3 acetylation at lysine 27 (H3K27ac), a marker of active enhancers, in unstimulated HUVECs and HUVECs stimulated with VEGFA for 1, 4, and 12 h. We show that sites with the greatest H3K27ac change upon stimulation were associated tightly with EP300, a histone acetyltransferase. Using the variation of H3K27ac as a novel epigenetic signature, we identified transcriptional regulatory elements that are functionally linked to angiogenesis, participate in rapid VEGFA-stimulated changes in chromatin conformation, and mediate VEGFA-induced transcriptional responses. Dynamic H3K27ac deposition and associated changes in chromatin conformation required EP300 activity instead of altered nucleosome occupancy or changes in DNase I hypersensitivity. EP300 activity was also required for a subset of dynamic H3K27ac sites to loop into proximity of promoters. Our study identified thousands of endothelial, VEGFA-responsive enhancers, demonstrating that an epigenetic signature based on the variation of a chromatin feature is a productive approach to define signal-responsive genomic elements. Further, our study implicates global epigenetic modifications in rapid, signal-responsive transcriptional regulation.


Cell | 2017

YY1 Is a Structural Regulator of Enhancer-Promoter Loops

Abraham S. Weintraub; Charles H. Li; Alicia V. Zamudio; Alla A. Sigova; Nancy M. Hannett; Daniel S. Day; Brian J. Abraham; Malkiel A. Cohen; Behnam Nabet; Dennis L. Buckley; Yang Eric Guo; Rudolf Jaenisch; James E. Bradner; Nathanael S. Gray; Richard A. Young

There is considerable evidence that chromosome structure plays important roles in gene control, but we have limited understanding of the proteins that contribute to structural interactions between gene promoters and their enhancer elements. Large DNA loops that encompass genes and their regulatory elements depend on CTCF-CTCF interactions, but most enhancer-promoter interactions do not employ this structural protein. Here, we show that the ubiquitously expressed transcription factor Yin Yang 1 (YY1) contributes to enhancer-promoter structural interactions in a manner analogous to DNA interactions mediated by CTCF. YY1 binds to active enhancers and promoter-proximal elements and forms dimers that facilitate the interaction of these DNA elements. Deletion of YY1 binding sites or depletion of YY1 protein disrupts enhancer-promoter looping and gene expression. We propose that YY1-mediated enhancer-promoter interactions are a general feature of mammalian gene control.


Human Molecular Genetics | 2011

Amniocytes can serve a dual function as a source of iPS cells and feeder layers

Raymond M. Anchan; Philipp Quaas; Behzad Gerami-Naini; Hrishikesh Bartake; Adam Griffin; Yilan Zhou; Daniel S. Day; Jennifer L. Eaton; Liji L. George; Catherine Naber; Annick Turbe-Doan; Peter J. Park; Mark D. Hornstein; Richard L. Maas

Clinical barriers to stem-cell therapy include the need for efficient derivation of histocompatible stem cells and the zoonotic risk inherent to human stem-cell xenoculture on mouse feeder cells. We describe a system for efficiently deriving induced pluripotent stem (iPS) cells from human and mouse amniocytes, and for maintaining the pluripotency of these iPS cells on mitotically inactivated feeder layers prepared from the same amniocytes. Both cellular components of this system are thus autologous to a single donor. Moreover, the use of human feeder cells reduces the risk of zoonosis. Generation of iPS cells using retroviral vectors from short- or long-term cultured human and mouse amniocytes using four factors, or two factors in mouse, occurs in 5–7 days with 0.5% efficiency. This efficiency is greater than that reported for mouse and human fibroblasts using similar viral infection approaches, and does not appear to result from selective reprogramming of Oct4+ or c-Kit+ amniocyte subpopulations. Derivation of amniocyte-derived iPS (AdiPS) cell colonies, which express pluripotency markers and exhibit appropriate microarray expression and DNA methylation properties, was facilitated by live immunostaining. AdiPS cells also generate embryoid bodies in vitro and teratomas in vivo. Furthermore, mouse and human amniocytes can serve as feeder layers for iPS cells and for mouse and human embryonic stem (ES) cells. Thus, human amniocytes provide an efficient source of autologous iPS cells and, as feeder cells, can also maintain iPS and ES cell pluripotency without the safety concerns associated with xenoculture.


Science | 2018

Coactivator condensation at super-enhancers links phase separation and gene control

Benjamin R. Sabari; Alessandra Dall’Agnese; Ann Boija; Isaac A. Klein; Eliot L. Coffey; Krishna Shrinivas; Brian J. Abraham; Nancy M. Hannett; Alicia V. Zamudio; John Colonnese Manteiga; Charles H. Li; Yang E. Guo; Daniel S. Day; Jurian Schuijers; Eliza Vasile; Sohail Malik; Tong Ihn Lee; Ibrahim Cisse; Robert G. Roeder; Phillip A. Sharp; Arup K. Chakraborty; Richard A. Young

Phase separation and gene control Many components of eukaryotic transcription machinery—such as transcription factors and cofactors including BRD4, subunits of the Mediator complex, and RNA polymerase II—contain intrinsically disordered low-complexity domains. Now a conceptual framework connecting the nature and behavior of their interactions to their functions in transcription regulation is emerging (see the Perspective by Plys and Kingston). Chong et al. found that low-complexity domains of transcription factors form concentrated hubs via functionally relevant dynamic, multivalent, and sequence-specific protein-protein interaction. These hubs have the potential to phase-separate at higher concentrations. Indeed, Sabari et al. showed that at super-enhancers, BRD4 and Mediator form liquid-like condensates that compartmentalize and concentrate the transcription apparatus to maintain expression of key cell-identity genes. Cho et al. further revealed the differential sensitivity of Mediator and RNA polymerase II condensates to selective transcription inhibitors and how their dynamic interactions might initiate transcription elongation. Science, this issue p. eaar2555, p. eaar3958, p. 412; see also p. 329 Phase-separated condensates compartmentalize the transcription apparatus at super-enhancers of key cell-identity genes. INTRODUCTION Mammalian genes that play prominent roles in healthy and diseased cellular states are often controlled by special DNA elements called super-enhancers (SEs). SEs are clusters of enhancers that are occupied by an unusually high density of interacting factors and drive higher levels of transcription than most typical enhancers. This high-density assembly at SEs has been shown to exhibit sharp transitions of formation and dissolution, forming in a single nucleation event and collapsing when chromatin factors or nucleation sites are deleted. These features led us to postulate that SEs are phase-separated multimolecular assemblies, also known as biomolecular condensates. Phase-separated condensates, such as the nucleolus and other membraneless cellular bodies, provide a means to compartmentalize and concentrate biochemical reactions within cells. RATIONALE SEs are formed by the binding of master transcription factors (TFs) at each component enhancer, and these recruit unusually high densities of coactivators, including Mediator and BRD4. Mediator is a large (~1.2 MDa) multisubunit complex that has multiple roles in transcription, including bridging interactions between TFs and RNA polymerase II (RNA Pol II). BRD4 facilitates the release of RNA Pol II molecules from the site of transcription initiation. The presence of MED1, a subunit of Mediator, and BRD4 can be used to define SEs. We reasoned that if transcriptional condensates are formed at SEs, then MED1 and BRD4 should be visualized as discrete bodies at SE elements in cell nuclei. These bodies should exhibit behaviors described for liquid-like condensates. We investigated these possibilities by using murine embryonic stem cells (mESCs), in which SEs were originally described. Because intrinsically disordered regions (IDRs) of proteins have been implicated in condensate formation, we postulated that the large IDRs present in MED1 and BRD4 might be involved. RESULTS We found that MED1 and BRD4 occupy discrete nuclear bodies that occur at SEs in mESCs. These bodies exhibit properties of other well-studied biomolecular condensates, including rapid recovery of fluorescence after photobleaching and sensitivity to 1,6-hexanediol, which disrupts liquid-like condensates. Disruption of MED1 and BRD4 bodies by 1,6-hexanediol was accompanied by a loss of chromatin-bound MED1 and BRD4 at SEs, as well as a loss of RNA Pol II at SEs and SE-driven genes. The IDRs of both MED1 and BRD4 formed phase-separated liquid droplets in vitro, and these droplets exhibited features characteristic of condensates formed by networks of weak protein-protein interactions. The MED1-IDR droplets were found to concentrate BRD4 and RNA Pol II from transcriptionally competent nuclear extracts, which may reflect their contribution to compartmentalizing and concentrating biochemical reactions associated with transcription at SEs in cells. CONCLUSION Our results show that coactivators form phase-separated condensates at SEs and that SE condensates compartmentalize and concentrate the transcription apparatus at key cell-identity genes. These results have implications for the mechanisms involved in the control of genes in healthy and diseased cell states. We suggest that SE condensates facilitate the compartmentalization and concentration of transcriptional components at specific genes through the phase-separating properties of IDRs in TFs and cofactors. SE condensates may thus ensure robust transcription of genes essential to cell-identity maintenance. These properties may also explain why cancer cells acquire large SEs at driver oncogenes and why SEs that facilitate transcriptional dysregulation in disease can be especially sensitive to transcriptional inhibitors. Phase separation of coactivators compartmentalizes and concentrates the transcription apparatus. Enhancers are gene regulatory elements bound by transcription factors that recruit coactivators and the transcription apparatus (not shown) to regulate gene expression. Super-enhancers are clusters of enhancers bound by master transcription factors that concentrate high densities of coactivators and the transcription apparatus to drive robust expression of genes that play prominent roles in cell identity. This is achieved by the phase separation of coactivators, which is driven in part by high-valency and low-affinity interactions of intrinsically disordered regions. Super-enhancers (SEs) are clusters of enhancers that cooperatively assemble a high density of the transcriptional apparatus to drive robust expression of genes with prominent roles in cell identity. Here we demonstrate that the SE-enriched transcriptional coactivators BRD4 and MED1 form nuclear puncta at SEs that exhibit properties of liquid-like condensates and are disrupted by chemicals that perturb condensates. The intrinsically disordered regions (IDRs) of BRD4 and MED1 can form phase-separated droplets, and MED1-IDR droplets can compartmentalize and concentrate the transcription apparatus from nuclear extracts. These results support the idea that coactivators form phase-separated condensates at SEs that compartmentalize and concentrate the transcription apparatus, suggest a role for coactivator IDRs in this process, and offer insights into mechanisms involved in the control of key cell-identity genes.


Cell Reports | 2018

Transcriptional Dysregulation of MYC Reveals Common Enhancer-Docking Mechanism

Jurian Schuijers; John Colonnese Manteiga; Abraham S. Weintraub; Daniel S. Day; Alicia V. Zamudio; Tong Ihn Lee; Richard A. Young

SUMMARY Transcriptional dysregulation of the MYC oncogene is among the most frequent events in aggressive tumor cells, and this is generally accomplished by acquisition of a super-enhancer somewhere within the 2.8 Mb TAD where MYC resides. We find that these diverse cancer-specific super-enhancers, differing in size and location, interact with the MYC gene through a common and conserved CTCF binding site located 2 kb upstream of the MYC promoter. Genetic perturbation of this enhancer-docking site in tumor cells reduces CTCF binding, super-enhancer interaction, MYC gene expression, and cell proliferation. CTCF binding is highly sensitive to DNA methylation, and this enhancer-docking site, which is hypomethylated in diverse cancers, can be inactivated through epigenetic editing with dCas9-DNMT. Similar enhancer-docking sites occur at other genes, including genes with prominent roles in multiple cancers, suggesting a mechanism by which tumor cell oncogenes can generally hijack enhancers. These results provide insights into mechanisms that allow a single target gene to be regulated by diverse enhancer elements in different cell types.

Collaboration


Dive into the Daniel S. Day's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard A. Young

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Abraham S. Weintraub

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Charles H. Li

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jurian Schuijers

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Tong Ihn Lee

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

William T. Pu

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Aki Minoda

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Alicia V. Zamudio

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge