Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Stöckel is active.

Publication


Featured researches published by Daniel Stöckel.


BMC Bioinformatics | 2010

BALL - biochemical algorithms library 1.3

Andreas Hildebrandt; Anna Katharina Dehof; Alexander Rurainski; Andreas Bertsch; Marcel Schumann; Nora C. Toussaint; Andreas Moll; Daniel Stöckel; Stefan Nickels; Sabine C. Mueller; Hans-Peter Lenhof; Oliver Kohlbacher

BackgroundThe Biochemical Algorithms Library (BALL) is a comprehensive rapid application development framework for structural bioinformatics. It provides an extensive C++ class library of data structures and algorithms for molecular modeling and structural bioinformatics. Using BALL as a programming toolbox does not only allow to greatly reduce application development times but also helps in ensuring stability and correctness by avoiding the error-prone reimplementation of complex algorithms and replacing them with calls into the library that has been well-tested by a large number of developers. In the ten years since its original publication, BALL has seen a substantial increase in functionality and numerous other improvements.ResultsHere, we discuss BALLs current functionality and highlight the key additions and improvements: support for additional file formats, molecular edit-functionality, new molecular mechanics force fields, novel energy minimization techniques, docking algorithms, and support for cheminformatics.ConclusionsBALL is available for all major operating systems, including Linux, Windows, and MacOS X. It is available free of charge under the Lesser GNU Public License (LPGL). Parts of the code are distributed under the GNU Public License (GPL). BALL is available as source code and binary packages from the project web site at http://www.ball-project.org. Recently, it has been accepted into the debian project; integration into further distributions is currently pursued.


Bioinformatics | 2016

Multi-omics enrichment analysis using the GeneTrail2 web service

Daniel Stöckel; Tim Kehl; Patrick Trampert; Lara Schneider; Christina Backes; Nicole Ludwig; Andreas Gerasch; Michael Kaufmann; Manfred Gessler; Norbert Graf; Eckart Meese; Andreas Keller; Hans-Peter Lenhof

MOTIVATION Gene set analysis has revolutionized the interpretation of high-throughput transcriptomic data. Nowadays, with comprehensive studies that measure multiple -omics from the same sample, powerful tools for the integrative analysis of multi-omics datasets are required. RESULTS Here, we present GeneTrail2, a web service allowing the integrated analysis of transcriptomic, miRNomic, genomic and proteomic datasets. It offers multiple statistical tests, a large number of predefined reference sets, as well as a comprehensive collection of biological categories and enables direct comparisons between the computed results. We used GeneTrail2 to explore pathogenic mechanisms of Wilms tumors. We not only succeeded in revealing signaling cascades that may contribute to the malignancy of blastemal subtype tumors but also identified potential biomarkers for nephroblastoma with adverse prognosis. The presented use-case demonstrates that GeneTrail2 is well equipped for the integrative analysis of comprehensive -omics data and may help to shed light on complex pathogenic mechanisms in cancer and other diseases. AVAILABILITY AND IMPLEMENTATION GeneTrail2 can be freely accessed under https://genetrail2.bioinf.uni-sb.de CONTACT : [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.


Nucleic Acids Research | 2017

miRPathDB: a new dictionary on microRNAs and target pathways

Christina Backes; Tim Kehl; Daniel Stöckel; Tobias Fehlmann; Lara Schneider; Eckart Meese; Hans-Peter Lenhof; Andreas Keller

In the last decade, miRNAs and their regulatory mechanisms have been intensively studied and many tools for the analysis of miRNAs and their targets have been developed. We previously presented a dictionary on single miRNAs and their putative target pathways. Since then, the number of miRNAs has tripled and the knowledge on miRNAs and targets has grown substantially. This, along with changes in pathway resources such as KEGG, leads to an improved understanding of miRNAs, their target genes and related pathways. Here, we introduce the miRNA Pathway Dictionary Database (miRPathDB), freely accessible at https://mpd.bioinf.uni-sb.de/. With the database we aim to complement available target pathway web-servers by providing researchers easy access to the information which pathways are regulated by a miRNA, which miRNAs target a pathway and how specific these regulations are. The database contains a large number of miRNAs (2595 human miRNAs), different miRNA target sets (14 773 experimentally validated target genes as well as 19 281 predicted targets genes) and a broad selection of functional biochemical categories (KEGG-, WikiPathways-, BioCarta-, SMPDB-, PID-, Reactome pathways, functional categories from gene ontology (GO), protein families from Pfam and chromosomal locations totaling 12 875 categories). In addition to Homo sapiens, also Mus musculus data are stored and can be compared to human target pathways.


Bioinformatics | 2013

NetworkTrail—a web service for identifying and visualizing deregulated subnetworks

Daniel Stöckel; Oliver Müller; Tim Kehl; Andreas Gerasch; Christina Backes; Alexander Rurainski; Andreas Keller; Michael Kaufmann; Hans-Peter Lenhof

UNLABELLED The deregulation of biochemical pathways plays a central role in many diseases like cancer or Parkinsonss disease. In silico tools for calculating these deregulated pathways may help to gain new insights into pathogenic mechanisms and may open novel avenues for therapy stratification in the sense of personalized medicine. Here, we present NetworkTrail, a web service for the detection of deregulated pathways and subgraphs in biological networks. NetworkTrail uses a state-of-the-art integer linear programming-based approach for this task and offers interfaces to the Biological Network Analyzer (BiNA) and Cytoscape Web for visualizing the resulting subnetworks. By providing an accessible interface to otherwise hard-to-use command line tools, the new web service enables non-experts to quickly and reliably carry out this type of network analyses. AVAILABILITY AND IMPLEMENTATION NetworkTrail is a JavaServer Pages-based web service. The algorithm for finding deregulated subnetworks has been implemented in C++. NetworkTrail is available at http://networktrail.bioinf.uni-sb.de/.


Genome Medicine | 2015

BALL-SNP: combining genetic and structural information to identify candidate non-synonymous single nucleotide polymorphisms

Sabine C. Mueller; Christina Backes; Olga V. Kalinina; Benjamin Meder; Daniel Stöckel; Hans-Peter Lenhof; Eckart Meese; Andreas Keller

BackgroundHigh-throughput genetic testing is increasingly applied in clinics. Next-Generation Sequencing (NGS) data analysis however still remains a great challenge. The interpretation of pathogenicity of single variants or combinations of variants is crucial to provide accurate diagnostic information or guide therapies.MethodsTo facilitate the interpretation of variants and the selection of candidate non-synonymous polymorphisms (nsSNPs) for further clinical studies, we developed BALL-SNP. Starting from genetic variants in variant call format (VCF) files or tabular input, our tool, first, visualizes the three-dimensional (3D) structure of the respective proteins from the Protein Data Bank (PDB) and highlights mutated residues, automatically. Second, a hierarchical bottom up clustering on the nsSNPs within the 3D structure is performed to identify nsSNPs, which are close to each other. The modular and flexible implementation allows for straightforward integration of different databases for pathogenic and benign variants, but also enables the integration of pathogenicity prediction tools. The collected background information of all variants is presented below the 3D structure in an easily interpretable table format.ResultsFirst, we integrated different data resources into BALL-SNP, including databases containing information on genetic variants such as ClinVar or HUMSAVAR; third party tools that predict stability or pathogenicity in silico such as I-Mutant2.0; and additional information derived from the 3D structure such as a prediction of binding pockets. We then explored the applicability of BALL-SNP on the example of patients suffering from cardiomyopathies. Here, the analysis highlighted accumulation of variations in the genes JUP, VCL, and SMYD2.ConclusionSoftware solutions for analyzing high-throughput genomics data are important to support diagnosis and therapy selection. Our tool BALL-SNP, which is freely available at http://www.ccb.uni-saarland.de/BALL-SNP, combines genetic information with an easily interpretable and interactive, graphical representation of amino acid changes in proteins. Thereby relevant information from databases and computational tools is presented. Beyond this, proximity to functional sites or accumulations of mutations with a potential collective effect can be discovered.


Bioinformatics | 2015

ballaxy: web services for structural bioinformatics

Anna Katharina Hildebrandt; Daniel Stöckel; Nina M. Fischer; Luis de la Garza; Jens Krüger; Stefan Nickels; Marc Röttig; Charlotta Schärfe; Marcel Schumann; Philipp Thiel; Hans-Peter Lenhof; Oliver Kohlbacher; Andreas Hildebrandt

MOTIVATION Web-based workflow systems have gained considerable momentum in sequence-oriented bioinformatics. In structural bioinformatics, however, such systems are still relatively rare; while commercial stand-alone workflow applications are common in the pharmaceutical industry, academic researchers often still rely on command-line scripting to glue individual tools together. RESULTS In this work, we address the problem of building a web-based system for workflows in structural bioinformatics. For the underlying molecular modelling engine, we opted for the BALL framework because of its extensive and well-tested functionality in the field of structural bioinformatics. The large number of molecular data structures and algorithms implemented in BALL allows for elegant and sophisticated development of new approaches in the field. We hence connected the versatile BALL library and its visualization and editing front end BALLView with the Galaxy workflow framework. The result, which we call ballaxy, enables the user to simply and intuitively create sophisticated pipelines for applications in structure-based computational biology, integrated into a standard tool for molecular modelling. AVAILABILITY AND IMPLEMENTATION  ballaxy consists of three parts: some minor modifications to the Galaxy system, a collection of tools and an integration into the BALL framework and the BALLView application for molecular modelling. Modifications to Galaxy will be submitted to the Galaxy project, and the BALL and BALLView integrations will be integrated in the next major BALL release. After acceptance of the modifications into the Galaxy project, we will publish all ballaxy tools via the Galaxy toolshed. In the meantime, all three components are available from http://www.ball-project.org/ballaxy. Also, docker images for ballaxy are available at https://registry.hub.docker.com/u/anhi/ballaxy/dockerfile/. ballaxy is licensed under the terms of the GPL.


Nucleic Acids Research | 2017

RegulatorTrail: a web service for the identification of key transcriptional regulators

Tim Kehl; Lara Schneider; Florian Schmidt; Daniel Stöckel; Nico Gerstner; Christina Backes; Eckart Meese; Andreas Keller; Marcel H. Schulz; Hans-Peter Lenhof

Abstract Transcriptional regulators such as transcription factors and chromatin modifiers play a central role in most biological processes. Alterations in their activities have been observed in many diseases, e.g. cancer. Hence, it is of utmost importance to evaluate and assess the effects of transcriptional regulators on natural and pathogenic processes. Here, we present RegulatorTrail, a web service that provides rich functionality for the identification and prioritization of key transcriptional regulators that have a strong impact on, e.g. pathological processes. RegulatorTrail offers eight methods that use regulator binding information in combination with transcriptomic or epigenomic data to infer the most influential regulators. Our web service not only provides an intuitive web interface, but also a well-documented RESTful API that allows for a straightforward integration into third-party workflows. The presented case studies highlight the capabilities of our web service and demonstrate its potential for the identification of influential regulators: we successfully identified regulators that might explain the increased malignancy in metastatic melanoma compared to primary tumors, as well as important regulators in macrophages. RegulatorTrail is freely accessible at: https://regulatortrail.bioinf.uni-sb.de/.


2013 IEEE Symposium on Biological Data Visualization (BioVis) | 2013

PresentaBALL — A powerful package for presentations and lessons in structural biology

Stefan Nickels; Daniel Stöckel; Sabine C. Mueller; Hans-Peter Lenhof; Andreas Hildebrandt; Anna Katharina Dehof

Structural biology is based on an important observation: the function of a biomolecule is determined by its three-dimensional structure and its physico-chemical properties. Hence, visualization, modeling, and simulation of molecular structures and of their properties are crucial tools of the field. Typically, the graphical interfaces to molecular modeling packages are aimed at domain experts with significant experience and require an extensive learning period. But in many scenarios, such as teaching, presentations, and demonstrations, it would be highly preferable to have an intuitive environment for showcasing molecular functionality. Ideally, it should support simple preparation of the presentations as well as their convenient display. To keep the user interface simple and focused, the environment should be particularly adapted to the processing of molecular structures. Here, we present such a presentation framework, called PresentaBALL, which uses established web technology standards to provide a freely configurable browser-based interface into the extensive modeling and visualization capabilities of the Biochemical Algorithms Library (BALL). The web interface is embedded into BALLs graphical frontend BALLView, and provides complete, interactive access to the loaded molecular data. PresentaBALL enables researchers in biology with basic knowledge in HTML, JavaScript, or Python to easily setup academic tutorials, demonstrations, or scientific presentations and lectures with 3D structure content and interactive workflows. Owing to its flexible design, other modern forms of teaching and presentation, such as massive open online courses (MOOC) can also use PresentaBALL as their core component. PresentaBALL is licensed under the GNU Public License (GPL) and will be made available in BALL/BALLView, starting with the upcoming release (1.5).


International Journal of Cancer | 2018

The role of TCF3 as potential master regulator in blastemal Wilms tumors: The role of TCF3 as potential master regulator in blastemal Wilms tumors

Tim Kehl; Lara Schneider; Kathrin Kattler; Daniel Stöckel; Jenny Wegert; Nico Gerstner; Nicole Ludwig; Ute Distler; Stefan Tenzer; Manfred Gessler; Jörn Walter; Andreas Keller; Norbert Graf; Eckart Meese; Hans-Peter Lenhof

Wilms tumors are the most common type of pediatric kidney tumors. While the overall prognosis for patients is favorable, especially tumors that exhibit a blastemal subtype after preoperative chemotherapy have a poor prognosis. For an improved risk assessment and therapy stratification, it is essential to identify the driving factors that are distinctive for this aggressive subtype. In our study, we compared gene expression profiles of 33 tumor biopsies (17 blastemal and 16 other tumors) after neoadjuvant chemotherapy. The analysis of this dataset using the Regulator Gene Association Enrichment algorithm successfully identified several biomarkers and associated molecular mechanisms that distinguish between blastemal and nonblastemal Wilms tumors. Specifically, regulators involved in embryonic development and epigenetic processes like chromatin remodeling and histone modification play an essential role in blastemal tumors. In this context, we especially identified TCF3 as the central regulatory element. Furthermore, the comparison of ChIP‐Seq data of Wilms tumor cell cultures from a blastemal mouse xenograft and a stromal tumor provided further evidence that the chromatin states of blastemal cells share characteristics with embryonic stem cells that are not present in the stromal tumor cell line. These stem‐cell like characteristics could potentially add to the increased malignancy and chemoresistance of the blastemal subtype.


Bioinformatics | 2018

REGGAE: a novel approach for the identification of key transcriptional regulators

Tim Kehl; Lara Schneider; Kathrin Kattler; Daniel Stöckel; Jenny Wegert; Nico Gerstner; Nicole Ludwig; Ute Distler; Markus Schick; Ulrich Keller; Stefan Tenzer; Manfred Gessler; Jörn Walter; Andreas Keller; Norbert Graf; Eckart Meese; Hans-Peter Lenhof

Motivation: Transcriptional regulators play a major role in most biological processes. Alterations in their activities are associated with a variety of diseases and in particular with tumor development and progression. Hence, it is important to assess the effects of deregulated regulators on pathological processes. Results: Here, we present REGulator‐Gene Association Enrichment (REGGAE), a novel method for the identification of key transcriptional regulators that have a significant effect on the expression of a given set of genes, e.g. genes that are differentially expressed between two sample groups. REGGAE uses a Kolmogorov‐Smirnov‐like test statistic that implicitly combines associations between regulators and their target genes with an enrichment approach to prioritize the influence of transcriptional regulators. We evaluated our method in two different application scenarios, which demonstrate that REGGAE is well suited for uncovering the influence of transcriptional regulators and is a valuable tool for the elucidation of complex regulatory mechanisms. Availability and implementation: REGGAE is freely available at https://regulatortrail.bioinf.uni‐sb.de. Supplementary information: Supplementary data are available at Bioinformatics online.

Collaboration


Dive into the Daniel Stöckel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge