Tim Kehl
Saarland University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tim Kehl.
Bioinformatics | 2016
Daniel Stöckel; Tim Kehl; Patrick Trampert; Lara Schneider; Christina Backes; Nicole Ludwig; Andreas Gerasch; Michael Kaufmann; Manfred Gessler; Norbert Graf; Eckart Meese; Andreas Keller; Hans-Peter Lenhof
MOTIVATION Gene set analysis has revolutionized the interpretation of high-throughput transcriptomic data. Nowadays, with comprehensive studies that measure multiple -omics from the same sample, powerful tools for the integrative analysis of multi-omics datasets are required. RESULTS Here, we present GeneTrail2, a web service allowing the integrated analysis of transcriptomic, miRNomic, genomic and proteomic datasets. It offers multiple statistical tests, a large number of predefined reference sets, as well as a comprehensive collection of biological categories and enables direct comparisons between the computed results. We used GeneTrail2 to explore pathogenic mechanisms of Wilms tumors. We not only succeeded in revealing signaling cascades that may contribute to the malignancy of blastemal subtype tumors but also identified potential biomarkers for nephroblastoma with adverse prognosis. The presented use-case demonstrates that GeneTrail2 is well equipped for the integrative analysis of comprehensive -omics data and may help to shed light on complex pathogenic mechanisms in cancer and other diseases. AVAILABILITY AND IMPLEMENTATION GeneTrail2 can be freely accessed under https://genetrail2.bioinf.uni-sb.de CONTACT : [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Nucleic Acids Research | 2017
Christina Backes; Tim Kehl; Daniel Stöckel; Tobias Fehlmann; Lara Schneider; Eckart Meese; Hans-Peter Lenhof; Andreas Keller
In the last decade, miRNAs and their regulatory mechanisms have been intensively studied and many tools for the analysis of miRNAs and their targets have been developed. We previously presented a dictionary on single miRNAs and their putative target pathways. Since then, the number of miRNAs has tripled and the knowledge on miRNAs and targets has grown substantially. This, along with changes in pathway resources such as KEGG, leads to an improved understanding of miRNAs, their target genes and related pathways. Here, we introduce the miRNA Pathway Dictionary Database (miRPathDB), freely accessible at https://mpd.bioinf.uni-sb.de/. With the database we aim to complement available target pathway web-servers by providing researchers easy access to the information which pathways are regulated by a miRNA, which miRNAs target a pathway and how specific these regulations are. The database contains a large number of miRNAs (2595 human miRNAs), different miRNA target sets (14 773 experimentally validated target genes as well as 19 281 predicted targets genes) and a broad selection of functional biochemical categories (KEGG-, WikiPathways-, BioCarta-, SMPDB-, PID-, Reactome pathways, functional categories from gene ontology (GO), protein families from Pfam and chromosomal locations totaling 12 875 categories). In addition to Homo sapiens, also Mus musculus data are stored and can be compared to human target pathways.
Bioinformatics | 2013
Daniel Stöckel; Oliver Müller; Tim Kehl; Andreas Gerasch; Christina Backes; Alexander Rurainski; Andreas Keller; Michael Kaufmann; Hans-Peter Lenhof
UNLABELLED The deregulation of biochemical pathways plays a central role in many diseases like cancer or Parkinsonss disease. In silico tools for calculating these deregulated pathways may help to gain new insights into pathogenic mechanisms and may open novel avenues for therapy stratification in the sense of personalized medicine. Here, we present NetworkTrail, a web service for the detection of deregulated pathways and subgraphs in biological networks. NetworkTrail uses a state-of-the-art integer linear programming-based approach for this task and offers interfaces to the Biological Network Analyzer (BiNA) and Cytoscape Web for visualizing the resulting subnetworks. By providing an accessible interface to otherwise hard-to-use command line tools, the new web service enables non-experts to quickly and reliably carry out this type of network analyses. AVAILABILITY AND IMPLEMENTATION NetworkTrail is a JavaServer Pages-based web service. The algorithm for finding deregulated subnetworks has been implemented in C++. NetworkTrail is available at http://networktrail.bioinf.uni-sb.de/.
Nucleic Acids Research | 2018
Christina Backes; Tobias Fehlmann; Fabian Kern; Tim Kehl; Hans-Peter Lenhof; Eckart Meese; Andreas Keller
Abstract The continuous increase of available biological data as consequence of modern high-throughput technologies poses new challenges for analysis techniques and database applications. Especially for miRNAs, one class of small non-coding RNAs, many algorithms have been developed to predict new candidates from next-generation sequencing data. While the amount of publications describing novel miRNA candidates keeps steadily increasing, the current gold standard database for miRNAs - miRBase - has not been updated since June 2014. As a result, publications describing new miRNA candidates in the last three to five years might have a substantial overlap of candidates without noticing. With miRCarta we implemented a database to collect novel miRNA candidates and augment the information provided by miRBase. In the first stage, miRCarta is thought to be a highly sensitive collection of potential miRNA candidates with a high degree of analysis functionality, annotations and details on each miRNA. We added—besides the full content of the miRBase—12,857 human miRNA precursors to miRCarta. Users can match their own predictions to the entries of miRCarta to reduce potential redundancies in their studies. miRCarta provides the most comprehensive collection of human miRNAs and miRNA candidates to form a basis for further refinement and validation studies. The database is freely accessible at https://mircarta.cs.uni-saarland.de/.
Nucleic Acids Research | 2017
Tim Kehl; Lara Schneider; Florian Schmidt; Daniel Stöckel; Nico Gerstner; Christina Backes; Eckart Meese; Andreas Keller; Marcel H. Schulz; Hans-Peter Lenhof
Abstract Transcriptional regulators such as transcription factors and chromatin modifiers play a central role in most biological processes. Alterations in their activities have been observed in many diseases, e.g. cancer. Hence, it is of utmost importance to evaluate and assess the effects of transcriptional regulators on natural and pathogenic processes. Here, we present RegulatorTrail, a web service that provides rich functionality for the identification and prioritization of key transcriptional regulators that have a strong impact on, e.g. pathological processes. RegulatorTrail offers eight methods that use regulator binding information in combination with transcriptomic or epigenomic data to infer the most influential regulators. Our web service not only provides an intuitive web interface, but also a well-documented RESTful API that allows for a straightforward integration into third-party workflows. The presented case studies highlight the capabilities of our web service and demonstrate its potential for the identification of influential regulators: we successfully identified regulators that might explain the increased malignancy in metastatic melanoma compared to primary tumors, as well as important regulators in macrophages. RegulatorTrail is freely accessible at: https://regulatortrail.bioinf.uni-sb.de/.
Oncotarget | 2017
Tim Kehl; Christina Backes; Fabian Kern; Tobias Fehlmann; Nicole Ludwig; Eckart Meese; Hans-Peter Lenhof; Andreas Keller
miRNAs are typically repressing gene expression by binding to the 3’ UTR, leading to degradation of the mRNA. This process is dominated by the eight-base seed region of the miRNA. Further, miRNAs are known not only to target genes but also to target significant parts of pathways. A logical line of thoughts is: miRNAs with similar (seed) sequence target similar sets of genes and thus similar sets of pathways. By calculating similarity scores for all 3.25 million pairs of 2,550 human miRNAs, we found that this pattern frequently holds, while we also observed exceptions. Respective results were obtained for both, predicted target genes as well as experimentally validated targets. We note that miRNAs target gene set similarity follows a bimodal distribution, pointing at a set of 282 miRNAs that seems to target genes with very high specificity. Further, we discuss miRNAs with different (seed) sequences that nonetheless regulate similar gene sets or pathways. Most intriguingly, we found miRNA pairs that regulate different gene sets but similar pathways such as miR-6886-5p and miR-3529-5p. These are jointly targeting different parts of the MAPK signaling cascade. The main goal of this study is to provide a general overview on the results, to highlight a selection of relevant results on miRNAs, miRNA seeds, target genes and target pathways and to raise awareness for artifacts in respective comparisons. The full set of information that allows to infer detailed results on each miRNA has been included in miRPathDB, the miRNA target pathway database (https://mpd.bioinf.uni-sb.de).
International Journal of Cancer | 2018
Tim Kehl; Lara Schneider; Kathrin Kattler; Daniel Stöckel; Jenny Wegert; Nico Gerstner; Nicole Ludwig; Ute Distler; Stefan Tenzer; Manfred Gessler; Jörn Walter; Andreas Keller; Norbert Graf; Eckart Meese; Hans-Peter Lenhof
Wilms tumors are the most common type of pediatric kidney tumors. While the overall prognosis for patients is favorable, especially tumors that exhibit a blastemal subtype after preoperative chemotherapy have a poor prognosis. For an improved risk assessment and therapy stratification, it is essential to identify the driving factors that are distinctive for this aggressive subtype. In our study, we compared gene expression profiles of 33 tumor biopsies (17 blastemal and 16 other tumors) after neoadjuvant chemotherapy. The analysis of this dataset using the Regulator Gene Association Enrichment algorithm successfully identified several biomarkers and associated molecular mechanisms that distinguish between blastemal and nonblastemal Wilms tumors. Specifically, regulators involved in embryonic development and epigenetic processes like chromatin remodeling and histone modification play an essential role in blastemal tumors. In this context, we especially identified TCF3 as the central regulatory element. Furthermore, the comparison of ChIP‐Seq data of Wilms tumor cell cultures from a blastemal mouse xenograft and a stromal tumor provided further evidence that the chromatin states of blastemal cells share characteristics with embryonic stem cells that are not present in the stromal tumor cell line. These stem‐cell like characteristics could potentially add to the increased malignancy and chemoresistance of the blastemal subtype.
Bioinformatics | 2018
Tim Kehl; Lara Schneider; Kathrin Kattler; Daniel Stöckel; Jenny Wegert; Nico Gerstner; Nicole Ludwig; Ute Distler; Markus Schick; Ulrich Keller; Stefan Tenzer; Manfred Gessler; Jörn Walter; Andreas Keller; Norbert Graf; Eckart Meese; Hans-Peter Lenhof
Motivation: Transcriptional regulators play a major role in most biological processes. Alterations in their activities are associated with a variety of diseases and in particular with tumor development and progression. Hence, it is important to assess the effects of deregulated regulators on pathological processes. Results: Here, we present REGulator‐Gene Association Enrichment (REGGAE), a novel method for the identification of key transcriptional regulators that have a significant effect on the expression of a given set of genes, e.g. genes that are differentially expressed between two sample groups. REGGAE uses a Kolmogorov‐Smirnov‐like test statistic that implicitly combines associations between regulators and their target genes with an enrichment approach to prioritize the influence of transcriptional regulators. We evaluated our method in two different application scenarios, which demonstrate that REGGAE is well suited for uncovering the influence of transcriptional regulators and is a valuable tool for the elucidation of complex regulatory mechanisms. Availability and implementation: REGGAE is freely available at https://regulatortrail.bioinf.uni‐sb.de. Supplementary information: Supplementary data are available at Bioinformatics online.
F1000Research | 2016
Lara Schneider; Daniel Stöckel; Tim Kehl; Andreas Gerasch; Michael Kaufmann; Oliver Kohlbacher; Andreas Keller; Hans-Peter Lenhof
F1000Research | 2014
Patrick Trampert; Tim Kehl; Daniel Stöckel; Christina Backes; Andreas Keller; Hans-Peter Lenhof